478 resultados para 324.66


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex interplay between extraterrestrial events and earth-bound processes that triggered one of the greatest biological crises of the Phanerozoic requires a high resolution timescale. Detailed magnetic susceptibility measurements at the Contessa Highway and Bottaccione sections (Italy) span the Cretaceous-Paleogene boundary and reveal clear orbital signatures in the sedimentary record. Identification of precession and 405 kyr eccentricity cycles allows an estimate of 324+/-40 kyr for the duration of the Maastrichtian part of Chron C29r. We present in the same high resolution time frame sites in Spain and the North and South Atlantic and bio-horizons, biotic changes, stable isotopic excursions and the decrease in Osmium isotopes recorded in these sections. The onset of 187 Os/ 188 Os decrease coincides with the d13 C negative excursion K-PgE1, thus suggesting a first pulse in Deccan volcanism at 66.64 Ma. The K-PgE3 d13 C negative excursion is possibly the expression of a second pulse at 66.26 Ma. Late Maastrichtian d13 C negative excursions are of low intensity and span durations of one to two eccentricity cycles, whereas early Danian excursions are brief (about 30 kyr) and acute. In Biotic response to late Maastrichtian perturbations occurred with a delay of ca. 200 kyr after the beginning of K-PgE1 shortly before K-PgE3. The biotic perturbation could be thus either a delayed response to K-PgE1, or a direct response to K-PgE3, and possibly, a threshold response to the stepwise buildup of CO2 atmospheric injections. No delay is evident in response to early Danian hyperthermal events. These differences suggest that short-lived, volcanically-derived environmental perturbations were buffered within the stable late Maastrichtian oceanic realm whereas they were amplified by the more sensitive and highly disturbed early Danian oceanic ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.