480 resultados para 130-804C
Resumo:
Among the five sites drilled during Ocean Drilling Program Leg 130, two deep holes (8O3D and 807C) penetrated Cretaceous sediments overlying the basaltic pillows, flows, and possibly basement rocks. Abundant, poorly preserved radiolarians with limited diversity were recovered from a few horizons within the sediments proximal to the basalt. At Site 803, three thin layers of radiolarites interbedded with claystone and clayey siltstone yielded radiolarian assemblages of late Albian age. At Site 807, several layers of radiolarian siltstones were recovered proximal to the basalt. Among them the most significant radiolarian assemblage is an Aptian fauna, located approximately 7 m above the basaltic flows. The Aptian radiolarian age for Site 807 is at least in accord with those suggested by planktonic foraminifer and paleomagnetic evidence. These Cretaceous radiolarians are the oldest assemblages recorded from the Ontong Java Plateau region.
Resumo:
We produced a preliminary record for shallow-dwelling planktonic foraminifer d18O at Site 807 for the late Pleistocene, early Pliocene, and early Miocene. Site 807 d18O values between 4 and 5 Ma average 0.75 per mil more than Holocene values and show an average variation of 0.5 per mil. For the early Pliocene, peak maximum d18O at Site 807 attain values equivalent with the last glacial maximum whereas peak minimum d18O were never less than Holocene d18O. Shallow-dwelling planktonic d18O at Site 807 between 16 and 24 Ma average more than 1.0 per mil more positive than Holocene d18O and exhibit 0.5 per mil average amplitude. Assuming that the global ice budget for the early Pliocene and early Miocene was restricted to Antarctica, it is difficult to attribute the very positive Site 807 d18O for these intervals to ice on Antarctica. Site 807 d18O for these intervals more likely reflect sea-surface temperatures cooler than at present, sea-surface salinity greater than at present, increased dissolution, or some combination of these changes.
Resumo:
Consolidation tests were performed on 19 samples of calcareous ooze from the Ontong Java Plateau, obtained during Ocean Drilling Program Leg 130. Rebound curves from consolidation tests on Ontong Java Plateau samples yield porosity rebounds of 1%-4% for these sediments at equivalent depths up to 1200 mbsf. The exception is a radiolarian-rich sample that has 6% rebound. A rebound correction derived from the porosity rebound vs. depth data has been combined with a correction for pore-water expansion to correct the shipboard laboratory porosity data to in-situ values. Comparison of the laboratory porosity data corrected in this manner with the downhole log data shows good agreement.
Resumo:
A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the western equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastern Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.
Resumo:
Members of the calcareous nannofossil genus Discoaster have been used extensively to subdivide Tertiary deep-sea sediments into biostratigraphic zones or subzones (e.g., Martini, 1971; Bukry, 1973). Haq and Lohmann (1976) mapped biogeographic migrations of this group through time and over latitude. They suggested that expansions and contractions of Discoaster-dominated assemblages across latitudes reflect sea-surface temperature changes. Subsequently, late Pliocene Discoaster species were counted at closely spaced sample intervals from various Atlantic sites (Backman et al., 1986; Backman and Pestiaux, 1987; Chepstow-Lusty et al., 1989, 1991), and Indian Ocean as well as Pacific Ocean sites (Chepstow-Lusty, 1990). In addition to the biostratigraphic information revealing positions and the precision by which the different late Pliocene Discoaster species can be determined, these studies also demonstrated that discoasters strongly fluctuate in abundance as a function of time. These abundance variations occur in equatorial as well as temperate temperature regimes, and show periodicities that reflect orbital frequencies. Chepstow-Lusty et al. (1989, 1991) also suggested that the oscillating abundances partly represent productivity pressure, because discoasters tend to show low abundances under high productivity conditions and vice versa. In the Pacific Ocean, counts showing late Pliocene Discoaster abundances exist from three sites, namely Ocean Drilling Program (ODP) Site 677 in the eastern equatorial upwelling region, Core V28-179 from the central equatorial region, and Core V32-127 from the mid-latitude Hess Rise. The two Vema cores are condensed and show sedimentation rates below 0.5 cm/1000 yr, thus offering a poorly resolved stratigraphy. Hole 806C from the Ontong Java Plateau provided an opportunity to establish a highly resolved Discoaster record from the western extreme of the equatorial Pacific under an environmental setting that differed from ODP Site 677 by being less influenced by intense upwelling. The Discoaster counting technique is described by Backman and Shackleton (1983).