519 resultados para epsilon-Neodymium
(Table 3) Sr and Nd isotope composition, and Sr and carbonate contents of Atlantis Massif IODP holes
Resumo:
The role that meridional overturning circulation (MOC) patterns played in poleward heat transport during the extreme warmth of the Early to Late Cretaceous is a fundamental and unresolved question in climate dynamics. In order to address this question we must determine where deep waters formed, and how they may have circulated during periods of extreme warmth. Here we present late Albian through Maastrichtian (105 to 65 Ma) Nd isotope records from Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sites in the proto-Indian Ocean and the tropical Pacific. Comparison of these data with previously published records indicates deep-water formation in the Indian sector of the Southern Ocean began at least ?105 Ma, extending the record of high-latitude convection back into the Early Cretaceous prior to the peak warmth of the mid-Cretaceous. The growing body of data supports a mode of MOC in part characterized by high-latitude downwelling during the peak of greenhouse warmth of the Mesozoic and Cenozoic. However, this mode of MOC likely was characterized by numerous locations of deep convection that were regionally important, but not significant in terms of a globally overturning circulation due to paleogeographic and bathymetric barriers.
Resumo:
Voluminous, subaerial magmatism resulted in the formation of extensive seaward-dipping reflector sequences (SDRS) along the Paleogene Southeast Greenland rifted margin. Drilling during Leg 163 recovered basalts from the SDRS at 66ºN (Site 988) and 63ºN (Sites 989 and 990). The basalt from Site 988 is light rare-earth-element (REE) enriched (La(n)/Yb(n) = 3.4), with epsilon-Nd(t=60) = 5.3, 87Sr/86Sr = 0.7034, and 206Pb/204Pb = 17.98. It is similar to tholeiites recovered from the Irminger Basin during Leg 49 and to light-REE-enriched tholeiites from Iceland. Drilling at Site 989, the innermost of the sites on the 63ºN transect, was proposed to extend recovery of the earliest part of the SDRS initiated during Leg 152. These basalts are, however, younger than those from Site 917 and are compositionally similar to basalts from the more seaward Sites 990 and 915. Many of the basalts from Sites 989 and 990 show evidence of contamination by continental crust (e.g., epsilon-Nd(t=60) extends down to -3.7, 206Pb/204Pb extends down to 15.1). We suggest that the contaminant is a mixture of Archean granulite and amphibolite and that the most contaminated basalts have assimilated ~5% of crust. Uncontaminated basalts are isotopically similar to basalts from Site 918, on the main body of the SDRS, and are light-REE depleted. Consistent with previous models of the development of this margin, we show that at the time of formation of the basalts from Sites 989 and 990 (1) melting was at relatively shallow levels in a fully-fledged rift zone; (2) fragments of continental crust were present in the lithosphere above the zones of melt generation; and (3) the sublithospheric mantle was dominated by a depleted Icelandic plume component.
Resumo:
We analyzed sediment from Ocean Drilling Program (ODP) Site 1144 in the northern South China Sea to examine the weathering response of SE Asia to the strengthening of the East Asian Monsoon (EAM) since 14 ka. Our high-resolution record highlights the decoupling between continental chemical weathering, physical erosion and summer monsoon intensity. Mass accumulation rates, Ti/Ca, K/Rb, hematite/goethite and 87Sr/86Sr show sharp excursions from 11 to 8 ka, peaking at 10 ka. Clay minerals show a shorter-lived response with a higher kaolinite/(illite + chlorite) ratio at 10.7-9.5 ka. However, not all proxies show a clear response to environmental changes. Magnetic susceptibility rises sharply between 12 and 11 ka. Grain-size becomes finer from 14 to 10 ka and then coarsens until ~7 ka, but is probably controlled by bottom current flow and sealevel. Sr and Nd isotopes show that material is dominantly eroded from Taiwan with a lesser flux from Luzon, while clay mineralogy suggests that the primary sources during the Early Holocene were reworked via the shelf in the Taiwan Strait, rather than directly from Taiwan. Erosion was enhanced during monsoon strengthening and caused reworking of chemically weathered Pleistocene sediment largely from the now flooded Taiwan Strait, which was transgressed by ~8 ka, cutting off supply to the deep-water slope. None of the proxies shows an erosional response lasting until ~6 ka, when speleothem oxygen isotope records indicate the start of monsoon weakening. Although more weathered sediments were deposited from 11 to 8 ka when the monsoon was strong these are reworked and represent more weathering during the last glacial maximum (LGM) when the summer monsoon was weaker but the shelves were exposed.
Resumo:
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.
Resumo:
New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacifc, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafoor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacifc Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower epsilon-Ne(T) for a given epsilon-Sr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Delta 7/4 Pb (5.3-9.3) and Delta 8/4 Pb (46.3-68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type ("normal") mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Ne(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacifc region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources.
Resumo:
We have analyzed the Nd isotopic composition of both ancient seawater and detrital material from long sequences of carbonated oozes of the South Indian Ocean which are ODP Site 756 (Ninety East Ridge (-30°S), 1518 m water depth) and ODP Site 762 (Northwest Australian margin, 1360 m water depth). The measurements indicate that the epsilon-Nd changes in Indian seawater over the last 35 Ma result from changes in the oceanic circulation, large volcanic and continental weathering Nd inputs. This highlights the diverse nature of those controls and their interconnections in a small area of the ocean. These new records combined with those previously obtained at the equatorial ODP Sites 757 and 707 in the Indian Ocean (Gourlan et al., 2008, doi:10.1016/j.epsl.2007.11.054) established that the distribution of intermediate seawater epsilon-Nd was uniform over most of the Indian Ocean from 35 Ma to 10 Ma within a geographical area extending from 40°S to the equator and from -60°E to 120°E. However, the epsilon-Nd value of Indian Ocean seawater which kept an almost constant value (at about -7 to -8) from 35 to 15 Ma rose by 3 epsilon-Nd units from 15 to 10 Ma. This sharp increase has been caused by a radiogenic Nd enrichment of the water mass originating from the Pacific flowing through the Indonesian Passage. Using a two end-members model we calculated that the Nd transported to the Indian Ocean through the Indonesian Pathway was 1.7 times larger at 10 Ma than at 15 Ma. The Nd isotopic composition of ancient seawater and that of the sediment detrital component appear to be strongly correlated for some specific events. A first evidence occurs between 20 and 15 Ma with two positive spikes recorded in both epsilon-Nd signals that are clearly induced by a volcanic crisis of, most likely, the St. Paul hot-spot. A second evidence is the very large epsilon-Nd decrease recorded at ODP Sites 756 and 762 during the past 10 Ma which has never been previously observed. The synchronism between the epsilon-Nd decrease in seawater from 10 to 5 Ma and evidences of desertification in the western part of the nearly Australian continent suggests enhanced weathering inputs in this ocean from this continent as a result of climatic changes.
Resumo:
The shoaling and final closure of the Central American Seaway (CAS) resulted in a major change of the global ocean circulation and has been suggested as an essential driver for strengthening of Atlantic Meridional Overturning Circulation (AMOC). The exact timing of CAS closure is key to interpreting its importance. Here we present a reconstruction of deep and intermediate water Nd and Pb isotope compositions obtained from fossil fish teeth and the authigenic coatings of planktonic foraminifera in the eastern equatorial Pacific (Ocean Drilling Program (ODP) Site 1241) and the Caribbean (ODP Sites 998, 999, and 1000) covering the final stages of CAS closure between 5.6 and 2.2 Ma. The data for the Pacific site indicate no significant Atlantic/Caribbean influence over this entire period. The Caribbean sites show a continuous trend to less radiogenic Nd isotope compositions during the Pliocene, consistent with an enhancement of Upper North Atlantic Deep Water (UNADW) inflow and a strengthening of the AMOC. Superimposed onto this long-term trend, shorter-term changes of intermediate Caribbean Nd isotope signatures approached more UNADW-like values during intervals when published reconstructions of seawater salinity suggested complete closure of the CAS. The data imply that significant deep water exchange with the Pacific essentially stopped by 7 Ma and that shallow exchange, which still occurred at least periodically until approximately 2.5 Ma, may have been linked to the strength of the AMOC but did not have any direct effect on the intermediate and deep Caribbean Nd isotope signatures through mixing with Pacific waters.
Resumo:
Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.