471 resultados para epsilon(Nd)
                                
                                
                                
                                
Resumo:
We analyzed sediment from Ocean Drilling Program (ODP) Site 1144 in the northern South China Sea to examine the weathering response of SE Asia to the strengthening of the East Asian Monsoon (EAM) since 14 ka. Our high-resolution record highlights the decoupling between continental chemical weathering, physical erosion and summer monsoon intensity. Mass accumulation rates, Ti/Ca, K/Rb, hematite/goethite and 87Sr/86Sr show sharp excursions from 11 to 8 ka, peaking at 10 ka. Clay minerals show a shorter-lived response with a higher kaolinite/(illite + chlorite) ratio at 10.7-9.5 ka. However, not all proxies show a clear response to environmental changes. Magnetic susceptibility rises sharply between 12 and 11 ka. Grain-size becomes finer from 14 to 10 ka and then coarsens until ~7 ka, but is probably controlled by bottom current flow and sealevel. Sr and Nd isotopes show that material is dominantly eroded from Taiwan with a lesser flux from Luzon, while clay mineralogy suggests that the primary sources during the Early Holocene were reworked via the shelf in the Taiwan Strait, rather than directly from Taiwan. Erosion was enhanced during monsoon strengthening and caused reworking of chemically weathered Pleistocene sediment largely from the now flooded Taiwan Strait, which was transgressed by ~8 ka, cutting off supply to the deep-water slope. None of the proxies shows an erosional response lasting until ~6 ka, when speleothem oxygen isotope records indicate the start of monsoon weakening. Although more weathered sediments were deposited from 11 to 8 ka when the monsoon was strong these are reworked and represent more weathering during the last glacial maximum (LGM) when the summer monsoon was weaker but the shelves were exposed.
                                
Resumo:
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.
                                
Resumo:
New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacifc, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafoor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacifc Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower epsilon-Ne(T) for a given epsilon-Sr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Delta 7/4 Pb (5.3-9.3) and Delta 8/4 Pb (46.3-68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type ("normal") mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Ne(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacifc region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources.
                                
                                
                                
                                
                                
Resumo:
Identifying terrigenous sources in deep-sea sediments may reveal temporal trends in paleocirculation and the relative role of eolian, upwelled, and hemipelagic Fe sources to surface waters. Bulk elemental and isotopic geochemistry of deep-sea sediments recovered during Ocean Drilling Program Leg 177 in the southeastern Atlantic sector of the Southern Ocean reveal several important aspects of paleocirculation and terrigenous provenance. The sites studied span 43°-53°S and represent different oceanographic settings relative to regional hydrography and sediment type. Bulk sediment geochemistry indicates that terrigenous provenance varied over the past 600 k.y. Site 1089, the northernmost site, exhibits clear glacial-interglacial variability in provenance, while provenance appears to vary regardless of climate state at the more southerly sites (Site 1093 and 1094). Nd and Sr isotopes and Sm/Nd ratios of the terrigenous fraction indicate that study sites have geochemically distinguishable provenance. Nd and Sr isotopes further suggest that Sites 1089 and 1094 both contain detrital components that originated in South America over the past 30 k.y.; however, Site 1089 is also influenced by southern African sources and the strength of the Agulhas Current. The e-Nd data support a more hemipelagic source for the terrigenous material rather than an eolian source based on comparisons with Antarctic ice core data and known sea-ice extent.
                                
Resumo:
In the nineties, cold-water coral mounds were discovered in the Porcupine Seabight (NE Atlantic, west of Ireland). A decade later, this discovery led to the drilling of the entire Challenger cold-water coral mound (Eastern slope, Porcupine Seabight) during IODP Expedition 307. As more than 50% of the sediment within Challenger Mound consists of terrigenous material, the terrigenous component is equally important for the build-up of the mound as the framework-building corals. Moreover, the terrigenous fraction contains important information on the dynamics and the conditions of the depositional environment during mound development. In this study, the first in-depth investigation of the terrigenous sediment fraction of a cold-water coral mound is performed, combining clay mineralogy, sedimentology, petrography and Sr-Nd-isotopic analysis on a gravity core (MD01-2451G) collected at the top of Challenger Mound. Sr- and Nd-isotopic fingerprinting identifies Ireland as the main contributor of terrigenous material in Challenger Mound. Besides this, a variable input of volcanic material from the northern volcanic provinces (Iceland and/or the NW British Isles) is recognized in most of the samples. This volcanic material was most likely transported to Challenger Mound during cold climatic stages. In three samples, the isotopic ratios indicate a minor contribution of sediment deriving from the old cratons on Greenland, Scandinavia or Canada. The grain-size distributions of glacial sediments demonstrate that ice-rafted debris was deposited with little or no sorting, indicating a slow bottom-current regime. In contrast, interglacial intervals contain strongly current-sorted sediments, including reworked glacio-marine grains. The micro textures of the quartz-sand grains confirm the presence of grains transported by icebergs in interglacial intervals. These observations highlight the role of ice-rafting as an important transport mechanism of terrigenous material towards the mound during the Late Quaternary. Furthermore, elevated smectite content in the siliciclastic, glaciomarine sediment intervals is linked to the deglaciation history of the British-Irish Ice Sheet (BIIS). The increase of smectite is attributed to the initial stage of chemical weathering processes, which became activated following glacial retreat and the onset of warmer climatic conditions. During these deglaciations a significant change in the signature of the detrital fraction and a lack of coral growth is observed. Therefore, we postulate that the deglaciation of the BIIS has an important effect on mound growth. It can seriously alter the hydrography, nutrient supply and sedimentation processes, thereby affecting both sediment input and coral growth and hence, coral mound development.
                                
Resumo:
We use quantitative X-ray diffraction to determine the mineralogy of late Quaternary marine sediments from the West and East Greenland shelves offshore from early Tertiary basalt outcrops. Despite the similar basalt outcrop area (60 000-70 000 km**2), there are significant differences between East and West Greenland sediments in the fraction of minerals (e.g. pyroxene) sourced from the basalt outcrops. We demonstrate the differences in the mineralogy between East and West Greenland marine sediments on three scales: (1) modern day, (2) late Quaternary inputs and (3) detailed down-core variations in 10 cores from the two margins. On the East Greenland Shelf (EGS), late Quaternary samples have an average quartz weight per cent of 6.2 ± 2.3 versus 12.8 ± 3.9 from the West Greenland Shelf (WGS), and 12.02 ± 4.8 versus 1.9 ± 2.3 wt% for pyroxene. K-means clustering indicated only 9% of the samples did not fit a simple EGS vs. WGS dichotomy. Sediments from the EGS and WGS are also isotopically distinct, with the EGS having higher eNd (-18 to 4) than those from the WGS (eNd = -25 to -35). We attribute the striking dichotomy in sediment composition to fundamentally different long-term Quaternary styles of glaciation on the two basalt outcrops.
                                
Resumo:
The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.
                                
Resumo:
In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.
 
                    