730 resultados para background deep sea
Resumo:
Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were discovered in Berriasian to Valanginian hemipelagic (shelfal) to eupelagic (deep-sea) sediments of the Wombat Plateau (Site 761), Argo Abyssal Plain (Sites 261, 765), southern Exmouth Plateau (Site 763), and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with trachyandesitic to rhyolitic ash as parent material is proved by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, slender zircon), and rock fragments, and by a vitroclastic ultra-fabric (smectitized glass shards). For the Argo Abyssal Plain, we can distinguish four types of bentonitic claystones of characteristic waxy appearance: (1) pure smectite bentonites, white to light gray, sharp basal contacts, and a homogeneous cryptocrystalline smectite matrix, (2) thin, greenish-gray bentonitic claystones having sharp upper and lower contacts, (3) gray-green bentonitic claystones mottled with background sedimentation and a distinct amount of terrigenous and pelagic detrital material, and (4) brick-red smectitic claystones having diffuse sedimentary contacts and a doubtful volcanic origin. For the other drill sites, we can distinguish between (1) pure bentonitic claystones similar in appearance and chemical composition to Type 1 of the Argo Abyssal Plain (except for gradual basal contacts) and (2) impure bentonitic claystones containing textures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components resulting from resedimentation or bioturbation. The ash layers were progressively altered (smectitized) during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally, completely homogenized to a pure smectite matrix without obvious relict structures. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau and, via turbidity currents, into the adjacent abyssal plains. The Wombat and Argo abyssal plain bentonites are interpreted, at least in parts, as proximal or distal ash turbidites, respectively.
Resumo:
Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr = 0.70369 - 0.70503, 206Pb/204Pb = 17.65 - 18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred fiom mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched, EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not "enriched" enough to be the EM II end-member.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.
Resumo:
Pack ice in the Bellingshausen Sea contained moderate to high stocks of microalgal biomass (3-10 mg Chl a/m**2) spanning the range of general sea-ice microalgal microhabitats (e.g., bottom, interior and surface) during the International Polar Year (IPY) Sea Ice Mass Balance in the Antarctic (SIMBA) studies. Measurements of irradiance above and beneath the ice as well as optical properties of the microalgae therein demonstrated that absorption of photosynthetically active radiation (PAR) by particulates (microalgae and detritus) had a substantial influence on attenuation of PAR and irradiance transmission in areas with moderate snow covers (0.2-0.3 m) and more moderate effects in areas with low snow cover. Particulates contributed an estimated 25 to 90% of the attenuation coefficients for the first-year sea ice at wavelengths less than 500 nm. Strong ultraviolet radiation (UVR) absorption by particulates was prevalent in the ice habitats where solar radiation was highest - with absorption coefficients by ice algae often being as large as that of the sea ice. Strong UVR-absorption features were associated with an abundance of dinoflagellates and a general lack of diatoms - perhaps suggesting UVR may be influencing the structure of some parts of the sea-ice microbial communities in the pack ice during spring. We also evaluated the time-varying changes in the spectra of under-ice irradiances in the austral spring and showed dynamics associated with changes that could be attributed to coupled changes in the ice thickness (mass balance) and microalgal biomass. All results are indicative of radiation-induced changes in the absorption properties of the pack ice and highlight the non-linear, time-varying, biophysical interactions operating within the Antarctic pack ice ecosystem.
Resumo:
The few existing studies on macrobenthic communities of the deep Arctic Ocean report low standing stocks, and confirm a gradient with declining biomass from the slopes down to the basins as commonly reported for deep-sea benthos. In this study we have further investigated the relationship of faunal abundance (N), biomass (B) as well as community production (P) with water depth, geographical latitude and sea ice concentration. The underlying dataset combines legacy data from the past 20 years, as well as recent field studies selected according to standardized quality control procedures. Community P/B and production were estimated using the multi-parameter ANN model developed by Brey (2012). We could confirm the previously described negative relationship of water depth and macrofauna standing stock in the Arctic deep-sea. Furthermore, the sea-ice cover increasing with high latitudes, correlated with decreasing abundances of down to < 200 individuals/m**2, biomasses of < 65 mg C/m**2 and P of < 75 mg C/m**2/y. Stations under influence of the seasonal ice zone (SIZ) showed much higher standing stock and P means between 400 - 1400 mg C/m**2/y; even at depths up to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic ocean, explaining both the low values in the ice-covered Arctic basins and the high values along the SIZ.
Resumo:
As part of the large-scale, interdisciplinary deep-sea study "BIGSET", the relationship between the monsoon-induced regional and temporal variability of POC deposition and the small-sized benthic community was investigated at several sites 2316-4420 m deep in the Arabian Sea during four cruises between 1995 and 1998. Vertical and horizontal distribution patterns of chloroplastic pigments (a measure of phytodetritus deposition), readily soluble protein and activity, and biomass parameters of the small-sized benthic community (Electron Transport System Activity (ETSA); bacterial ectoenzymatic activity (FDA turnover) and DNA concentrations) were measured concurrently with the vertical fluxes of POC and chloroplastic pigments. Sediment chlorophyll a (chl. a) profiles were used to calculate chl. a flux rates and to estimate POC flux across the sediment water interface using two different transport reaction models. These estimates were compared with corresponding flux rates determined in sediment traps. Regional variability of primary productivity and POC deposition at the deep-sea floor creates a trophic gradient in the Arabian Basin from the NW to the SE, which is primarily related to the activity of monsoon winds and processes associated with the topography of the Arabian Basin and the vicinity of land masses. Inventories of sediment chloroplastic pigments closely corresponded to this trophic gradient. For ETSA, FDA and DNA, however, no clear coupling was found, although stations WAST (western Arabian Sea) and NAST (northern Arabian Sea) were characterised by high concentrations and activities. These parameters exhibited high spatial and temporal variability, making it impossible to recognise clear mechanisms controlling temporal and spatial community patterns of the small-sized benthic biota. Nevertheless, the entire Arabian Basin was recognised as being affected by monsoonal activity. Comparison of two different transport reaction models indicates that labile chl. a buried in deeper sediment layers may escape rapid degradation in Arabian deep-sea sediments.
Resumo:
The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°-2°C), moderate cooling in the subtropical midlatitudes (2°-6°C), and maximum cooling to the southeast of New Zealand (6°-10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
Resumo:
MedFlux sampling was carried out at the French JGOFS DYFAMED (DYnamique des Flux Atmospheriques en MEDiterranee) site in the Ligurian Sea (northwestern Mediterranean), 52km off Nice (431200N, 71400E) in 2300m water depth. In 2003, a mooring with sediment trap arrays was deployed 6 March (day of year, DOY 65) and recovered 6 May (DOY 126); this trap deployment will be referred to as Period 1 (P1). The array was redeployed a week later on 14 May (DOY 134) and recovered again on 30 June (DOY 181); this trap deployment will be referred to as Period 2 (P2). Indented-rotating sphere (IRS) valve traps were fitted with TS carousels to determine temporal variability of particulate matter flux. TS traps were fitted with ''dimpled'' spheres. Vertical flux at 200m depth is considered to be equivalent to new or export production, and traps sampled at 238 and 117m during P1 and P2, respectively. We also collected TS material at 711m during P1 and at 1918m during P2. Upon recovery, samples were split using a McLaneTM WSD splitter to allow multiple chemical analyses. Here we report 2003 data on TS particulate mass, and the contributions of organic carbon (OC), opal, lithogenic material and calcium carbonate to mass. In 2005, traps were deployed as described above for 55 d during a single period from 4 March (DOY 63) to 1 May (DOY 121). TS traps were fitted with ''dimpled'' spheres. TS particulate matter was collected from 313 to 924 m.