728 resultados para western South Atlantic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records of mean sortable silt and planktonic foraminiferal preservation from the Ceará Rise (western equatorial Atlantic) and from the Caribbean are presented to analyze the Pliocene (3.5-2.2 Ma) to Pleistocene (1.6-0.3 Ma) evolution of near-bottom current strength and the carbonate corrosiveness of deep water. During the mid-Pleistocene climate transition (~1 Ma) a drastic decrease in glacial bottom current strength and an increase in carbonate corrosiveness is registered, demonstrating a substantial decrease in the glacial contribution of the Lower North Atlantic Deep Water (LNADW) to the Atlantic Ocean. Also, an increased sensitivity to eccentricity orbital forcing is registered after the MPT. By contrast, carbonate preservation increases considerably in the deep Caribbean in response to a strong and persistent stable contribution of Upper North Atlantic Deep Water (UNADW). We found evidence for the strongest and most stable circulation within the LNADW cell during the Northern Hemisphere cooling period between ~3.2 and 2.75 Ma. This is in agreement with the 'superconveyor model' which postulates that the highest NADW production took place prior to ~2.7 Ma. A considerable decrease in bottom current strength and planktonic foraminiferal preservation is observed synchronous with the first occurrence of large-scale continental ice sheets in the Northern Hemisphere. This documents the final termination of the 'superconveyor' at ca. 2.75 Ma. However, our data do not support a 'superconveyor' in the interval between 3.5 and 3.2 Ma when high-amplitude fluctuations in bottom current flow and preservation in planktonic foraminifera are observed. Because of the great sensitivity of NADW production to changes in surface water salinity, we assume that the high-amplitude fluctuations of LNADW circulation prior to ~3.2 Ma are linked to changes in the Atlantic salinity budget. After 2.75 Ma they are primarily controlled by ice-sheet forcing. In contrast to the stepwise deterioration of planktonic foraminiferal preservation in the western deep Atlantic, a trend toward better preservation from the Pliocene to Pleistocene is observed in the deep Caribbean. This indicates a long-term increase in the contribution of UNADW to the Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The d18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ~4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern d18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial d18O changes of at least 2.2 per mil, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ~2.3 km, glacial d13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, d13C decreased continually to -0.5 per mil, about equal to the lowest LGM d13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores >2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ~1500 years at 4250 m and at ~4700 m. Apparent ventilation ages are presently unavailable for the LGM < 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM d13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages <2.3 km water depth were about the same as North Atlantic Deep Water today. Below ~2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary prospection is the study of morphological evolution and speciation in calcareous plankton from selected time-slices and key sites in the world oceans. In this context, the Neogene menardiform globorotalids serve as study objects for morphological speciation in planktic foraminifera. A downcore investigation of test morphology of the lineage of G. menardii-limbata-multicamerata during the past 8 million years was carried out in the western tropical Atlantic ODP Hole 925B. A total of 4669 specimens were measured and analyzed from 38 stratigraphic levels and compared to previous studies from DSDP Sites 502 and 503. Collection of digital images and morphometric measurements from digitized outlines were achieved using a microfossil orientation and imaging robot called AMOR and software, which was especially developed for this purpose. Most attention was given to the evolution of spiral height versus axial length of tests in keel view, but other parameters were investigated as well. The variability of morphological parameters in G. menardii, G. limbata, and G. multicamerata through time are visualized by volume density diagrams. At Hole 925B results show gradual test size increase in G. menardii until about 3.2 Ma. The combination of taxonomic determination in the light microscope with morphometric investigations shows strong morphological overlap and evolutionary continuity from ancestral to extant G. menardii (4-6 chambers in the final whorl) to the descendent but extinct G. limbata (seven chambers in the final whorl) and to G. multicamerata (>=8 chambers in the final whorl). In the morphospace defined by spiral height (dX) and axial length (dY) Globorotalia limbata and G. multicamerata strongly overlap with G. menardii. Distinction of G. limbata from G. menardii is only possible by slight differences in the number of chambers of the final whorl, nuances in spiral convexity, upper keel angles, radii of osculating circles, or by differences in reflectance of their tests. Globorotalia multicamerata can be distinguished from the other two forms by more than eight chambers in the final whorl. It appeared as two stratigraphically separate clusters during the Pliocene. Between 2.88 and 2.3 Ma G. menardii was severely restricted in size and abundance. Thereafter, it showed a rapid and prominent expansion of the upper test size extremes between 2.3 and 1.95 Ma persisting until present. The size-frequency distributions at Hole 925B are surprisingly similar to trends of menardiform globorotalids from Caribbean DSDP Site 502. There, the observations were explained as an adaptation to changes in the upper water column due to the emergence of the Isthmus of Panama. In light of more recent paleontological and geological investigations about the completion of the permanent land connection between North and South America since about 3 Ma the present study gives reason to suspect the sudden test size increase of G. menardii to reflect immigration of extra-large G. menardii from the Indian Ocean or the Pacific. It is hypothesized that during the Late Pliocene dispersal of large G. menardii into the southern to tropical Atlantic occurred during an intermittent episode of intense Agulhas Current leakage around the Cape of Good Hope and from there via warm eddy transport to the tropical Atlantic (Agulhas dispersal hypothesis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study is an evaluation of the applicability of biogenic barium as a proxy for productivity. For this purpose, 190 surface sediment samples from the South Atlantic Ocean were analysed for their barium and aluminium concentrations. Biogenic barium is estimated by subtracting the calculated terrigenous barium (obtained from the terrigenous Ba/Al ratio and the amount of Al in the sample) from the total Ba content in the sample. Based on the accumulation rates of biogenic barium, export production is estimated using three different algorithms proposed by [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181; Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021; Geomar. Report 38 (1995) 105]. Primary productivity was calculated from these different export productions and compared with measurements of recent primary productivity in the overlying surface waters. Only the primary productions calculated on the basis of the algorithm of [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181] yield productivity values comparable to those existing in ocean surface waters. This study further reveals that it is not sufficient to use a constant, generally applicable organic carbon/biogenic barium ratio, as is postulated by [Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021]. This ratio has to be assessed regionally. For the sediments of the Cape Basin in the eastern South Atlantic Ocean, a new algorithm is developed which gives plausible primary productivities for the overlying surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of 114 samples from the sediment surface of the Atlantic, eastern Pacific and western Indian sectors of the Southern Ocean has been analyzed for 230Th and biogenic silica. Maps of opal content, Th-normalized mass flux, and Th-normalized biogenic opal flux into the sediment have been derived. Significant differences in sedimentation patterns between the regions can be detected. The mean bulk vertical fluxes integrated into the sediment in the open Southern Ocean are found in a narrow range from 2.9 g/m**2 yr (Eastern Weddell Gyre) to 15.8 g/m**2 yr (Indian sector), setting upper and lower limits to the vertically received fraction of open ocean sediments. The silica flux to sediments of the Atlantic sector of the Southern Ocean is found to be 4.2 ± 1.4 * 10**11 mol/yr, just one half of the last estimate. This adjustment represents 6% of the output term in the global marine silica budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the increasing interest in the South Atlantic Ocean as a key area of the heat exchange between the southern and the northern hemisphere, information about its palaeoceanographic conditions during transitions from glacial to interglacial stages, the so-called Terminations, are not well understood. Herein we attempt to increase this information by studying the calcareous dinoflagellate cysts and the shells of Thoracosphaera heimii (calcareous cysts) of five Late Quaternary South Atlantic Ocean cores. Extremely high accumulation rates of calcareous cysts at the Terminations might be due to a combined effect of increased cyst production and better preservation as result of calm, oligotrophic conditions in the upper water layers. Low relative abundance of Sphaerodinella albatrosiana compared with Sphaerodinella tuberosa in the Cape Basin may be the result of the relatively colder environmental conditions in this region compared with the equatorial Atlantic Ocean with high relative abundance of S. albatrosiana. Furthermore, the predominance of S. tuberosa during glacials and interglacials at the observed site of the western Atlantic Ocean reflects decreased salinity in the upper water layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reviewed the paleoceanographic application of the carbon isotope composition of planktic foraminifera. Major controls on the distribution of d13C of dissolved CO2 (d13CSCO2) in the modern ocean are photosynthesis-respiration cycle, isotopic fractionation during air-sea exchange, and circulation. The carbon isotope composition of surface waters is not recorded without perturbations by planktic foraminifera. Besides d13CSCO2 of the surrounding seawater, the d13C composition of planktic foraminifera is affected by vital effects, the water depth of calcification and postdepositional dissolution. We compared several high-resolution (>10cm/ka) carbon isotope records from the Southern Ocean, the Benguela upwelling system, and the tropical Atlantic. In the Southern Ocean, carbon isotope values are about 1.2 per mil lower during the LGM and up to 1.7 per mil lower during the last deglaciation, when compared to the Holocene. These depletions might be explained with a combination of a subsurface nutrient enrichment and reduced air-sea exchange due to an increased stratification of surface waters. In the Benguela Upwelling system, waters originating in the south are upwelled. While the deglacial minimum is transferred and recorded in its full extent in the d13C record of Globigerina bulloides, glacial values show only little changes. This might suggest, that the lower glacial d13C values of high-latitude surface waters are not upwelled off Namibia, or that G. bulloides records post-upwelling conditions, when increased seasonal production has already increased surface-water d13C. Synchronous to the d13C depletions in high latitudes, low d13C values were recorded in Globigerinoides sacculifer during the LGM and during the last deglaciation in the nutrient-depleted western equatorial Atlantic. Hence, part of the glacial-interglacial variability presumably transferred from high to low latitudes seems to be related to changes in thermodynamic fractionation. The variability in d13C is lowest in the northernmost core M35003-4 from the eastern Caribbean, implying that the Antarctic Intermediate Water might have acted as a conduit to transfer the deglacial minimum to tropical surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contents of free lipids in the upper layers of slightly siliceous diatomaceous oozes from the South Atlantic and of calcareous foraminiferal oozes, of coral sediments and of red clays from the western tropical Pacific amount varies from 0.014 to 0.057% of dry sediment. Their content is inversely proportional to total content of organic matter. Relative content of low-polar compounds in total amount of lipids and content of hydrocarbons, fatty acids, and sterols in the composition of these compounds can serve as an index of degree of transformation of organic matter in sediment because these compounds are resistant to various degree to microbial and hydrolytic decomposition and, consequently, are selectively preserved under conditions of biodegradation of organic compounds during oxydation-reduction processes.