69 resultados para run-of-river
Resumo:
(of book) Problems of origin of the hydrosphere, history of formation and development of underground water, of the World Ocean, lakes, rivers, surface and subsurface ice are under consideration in the book. An attempt of the complete reconstruction of the continental hydrosphere in the Eastern Europe in Late Pleistocene is made. Methods of paleohydrologic studies are described. Some papers are devoted to paleoclimatic problems of river runoff formation and paleotermic evolution of continental glaciers.
Resumo:
Bacterial cell number in the water column of the Kara Sea and estuary areas of the Ob and Yenisey Rivers was determined in water samples collected at 32 stations at depths from the surface to 200 m. The samples were analyzed by direct microscopy. In most parts of the sea microorganism concentrations ranged generally from 103 to 104 cells per ml and their biomasses from milligrams to tens of mg/m**3. Bacterioplankton concentration of river waters was much higher than in the open sea, especially in Ob waters. The highest bacteria concentrations, hundreds of thousands cells per ml with biomass exceeding 200 mg/m**3, were found in the southern part of the Ob section. Minimal concentrations were observed in the northeastern part and near the southeastern part of the Ob section and the southeastern coast of Novaya Zemlya. Dark CO2 fixation rates determined at some stations indicated low bacteria biomass production.
Resumo:
The dataset contains measurements of river stage and discharge for one sites along the Akuliarusiarsuup Kuua River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2013 This river is a tributary to the Watson River discharging into Kangerlussuaq Fjord by the town of Kangerlussuaq, Southwest Greenland. Additional data of water temperature, air pressure are also provided. Compared to version 1.0 of the dataset, this dataset used a total of 36 in situ discharge observations collected between 2008 and 2012 to construct the rating curve. Furthermore, data of Station AK-004-001 between 2010-09-06T11:30 to 2010-09-07T13:30 have been removed from version 2.0 because these values were likely caused by backflow when a jokulhlaup from a large glacier dammed lake caused increased water levels in the downstreams lake. Thus, data measured at AK-004-001 between 2010-09-06T11:30 to 2010-09-07T13:30 are not representative for the AK-004 catchment.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
This study presents neodymium isotope and elemental data for cleaned planktonic foraminifera from ODP site 758 in the southernmost reaches of the Bay of Bengal in the north-east Indian Ocean. Cleaning experiments using oxidative-reductive techniques suggest that diagenetic Fe-Mn oxyhydroxide coatings can be effectively removed, and that the measured Nd isotope composition reflects the composition of seawater from which the foraminiferal calcium carbonate was precipitated. Modern core-top Pulleniatina obliquiloculata and Globorotalia menardii give epsilon-Nd values of 310.12 +/- 0.16 and 310.28 +/- 0.16, respectively, indistinguishable from recent direct measurements of surface seawater in this area. A high-resolution Nd isotope record obtained from G. menardii for the past 150 kyr shows systematic variations (Delta epsilon-Nd = 3) on glacial-interglacial timescales. The timing of those variations shows a remarkable correspondence with the global oxygen isotope record, which suggests a process controlling the Nd isotope composition that responds in phase with global climate cycles. Palaeoclimate reconstruction indicates that during the last glacial maximum changes in monsoon circulation resulted in a reduction in rainfall over the Indian subcontinent, and a decrease in the flux of river water delivered to the Bay of Bengal. Thus, changes in the riverine input of Nd, a change in either flux or composition, most likely caused the isotope variations, although changes in dust source or local ocean circulation may have also played a role. These results clearly establish a link between climate change and variations in radiogenic isotopes in the oceans, and illustrate the potential of Nd isotopes in foraminifera for highresolution palaeoceanographic reconstruction.
Resumo:
The GEMS-GLORI register, circulated by UNEP for review in 1996, lists 555 world major rivers discharging to oceans (Q > 10 km**3/year, or A > 10 000 km**2, or sediment discharge > 5Mt/year, or basin population >5M people). Up to 48 river attributes are listed, including major ions and nutrients (C, N, P) in both dissolved, particulate, organic and inorganic forms. For many rivers, two or three sets of data are provided with relevant periods of records and references. Although half of the selected rivers are not yet documented for water quality, most of the first 40 rivers are well described (Irrawady, Zambezi, Ogooue, Magdalena, are noted exceptions). Altogether about 10 000 individual data from 500 references are listed. The global coverage in terms of river discharge and/or drainage area ranges from 40 to 67% for most major water quality attributes but drops to 25% for some organic and/or particulate forms of N and P. Planned development of the register includes collection of information on particulate chemistry and data on endorheic rivers and selected tributaries.
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
Resumo:
Coral reef organisms are increasingly and simultaneously affected by global and local stressors such as ocean acidification (OA) and reduced light availability. However, knowledge of the interplay between OA and light availability is scarce. We exposed 2 calcifying coral reef species (the scleractinian coral Acropora millepora and the green alga Halimeda opuntia) to combinations of ambient and increased pCO2 (427 and 1073 µatm, respectively), and 2 light intensities (35 and 150 µmol photons/m**2/s) for 16 d. We evaluated the individual and combined effects of these 2 stressors on weight increase, calcification rates, O2 fluxes and chlorophyll a content for the species investigated. Weight increase of A. millepora was significantly reduced by OA (48%) and low light intensity (96%) compared to controls. While OA did not affect coral calcification in the light, it decreased calcification in the dark by 155%, leading to dissolution of the skeleton. H. opuntia weight increase was not affected by OA, but decreased (40%) at low light. OA did not affect algae calcification in the light, but decreased calcification in the dark by 164%, leading to dissolution. Low light significantly reduced gross photosynthesis (56 and 57%), net photosynthesis (62 and 60%) and respiration (43 and 48%) of A. millepora and H. opuntia, respectively. In contrast to A. millepora, H. opuntia significantly increased chlorophyll content by 15% over the course of the experiment. No interactive effects of OA and low light intensity were found on any response variable for either organism. However, A. millepora exhibited additive effects of OA and low light, while H. opuntia was only affected by low light. Thus, this study suggests that negative effects of low light and OA are additive on corals, which may have implications for management of river discharge into coastal coral reefs.
Resumo:
A curve describing the variation of the strontium isotopic composition of seawater for the late Neogene (9 to 2 Ma) was constructed from 87Sr/86Sr analyses of marine carbonate in five Deep Sea Drilling Project (DSDP) sites: 502, 519, 588, 590, and 593. The strontium isotopic composition of the oceans increased between 9 and 2 Ma with several changes in slope. From 9 to 5.5 Ma, 87Sr/86Sr values were nearly constant at ~0.708925. Between 5.5 and 4.5 Ma, 87Sr/86Sr ratios increased monotonically at a rate of not, vert, similar 1 * 10**-4 per million years. The steep slope during this interval provides the potential for high resolution strontium isotope stratigraphy across the Miocene/Pliocene boundary. The rate of change of 87Sr/86Sr decreases to near zero again during the interval 4.5-2.5 Ma, and ratios average 0.709025. The relatively rapid increase of 87Sr/86Sr between 5.5 and 4.5 Ma must be related to changes in the flux or average 87Sr/86Sr ratios of the major inputs of Sr to the oceans. Quantitative modelling of these inputs suggests that the increase was most probably caused by an increase in the dissolved riverine flux of strontium to the oceans, an increase in the average 87Sr/86Sr composition of river water, or some combination of these parameters. Modelling of this period as a transient-state requires a pulse-like increase in the input of 87Sr to the oceans between 5.5 and 4.5 Ma. Alternatively, the 5.5-4.5 Ma period can be modelled as a simple transition from one steady-state to another if the oceanic residence time of strontium was eight times less than the currently accepted value of 4 Ma. During the time interval of steep 87Sr/86Sr increase, other geochemical and sedimentologic changes also occur including an increase in sediment accumulation rates, a drop in the calcite compensation depth (CCD), and a decrease in the delta13C of dissolved bicarbonate (i.e., "carbon shift"). The simplest mechanism to explain 87Sr/86Sr variation and these related geochemical changes is to invoke an increase in the dissolved chemical fluxes carried by rivers to the oceans. This, in turn, implies increased chemical denudation rates of the continents and shelves during the late Neogene. The increase in chemical weathering rates is attributed to increased exposure of the continents by eustatic regression, intensified glacial/interglacial cycles, and accelerated rates of global tectonism beginning at 5.5 Ma during the latest Miocene.
Resumo:
A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.
Resumo:
Based on observations during four scientific expeditions to the Kara Sea and the Siberian rivers Ob and Yenisei we determined the discharge, distribution and characteristics of dissolved organic matter (DOM). Surface concentrations of dissolved organic carbon (DOC) ranged from 151 IlM C in the northern Kara Sea to 939 IlM C in the river Ob. The estimated annual mean DOC concentration in the Yenisei (681 IlM C) was slightly higher than in the Ob (640 IlM C). Dissolved organic nitrogen (DON) concentrations typically varied between 5 and 15 IlM N with higher values in the rivers. Freshwater discharge and DOC concentrations experienced pronounced seasonal variations strongly affecting the spatial and temporal distribution of DOM in the Kara Sea. The largely conservative distribution of DOC and DON along the salinity gradient indicated the predominantly refractory character of riverine DOM. This observation was consistent with laboratory experiments, which showed only minor losses due to flocculation processes and bacterial consumption. Optical properties and relatively high C/N ratios (19 to 51) of DO M suggest that a large fraction of river DOM is of terrestrial origin and that phytoplankton contributed little to DOM on the Kara Sea shelf during the sampling periods. Together, the rivers Ob and Yenisei discharge about 8 Tg DOC yr- I into the Kara Sea. Due to the absence of efficient removal mechanisms in these estuaries the majority of riverine DOM appears to pass the estuarine mixing zone and is transported towards the Arctic Ocean.
Resumo:
To determine the relationship between the spatial dinoflagellate cyst distribution and oceanic environmental conditions, 34 surface sediments from the Eastern and Western Mediterranean Sea have been investigated for their dinoflagellate cyst content. Multivariate ordination analyses identified sea-surface temperature, chlorophyll-a , nitrate concentration, salinity, and bottom oxygen concentration as the main factors affecting dinoflagellate cyst distribution in the region. Based on the relative abundance data, two associations can be distinguished that can be linked with major oceanographic settings. (1) An offshore eastern Mediterranean regime where surface sediments are characterized by oligotrophic, warm, saline surface water, and high oxygen bottom water concentrations (Impagidinium species, Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Operculodinium israelianum). Based on the absolute abundance, temperature is positively related to the cyst accumulation of Operculodinium israelianum. Temperature does not form a causal factor influencing the accumulation rate of the other species in this association. Impagidinium species and Nematosphaeropsis labyrinthus show a positive relationship between cyst accumulation and nitrate availability in the upper waters. (2) Species of association 2 have highest relative abundances in the Western Mediterranean Sea, Strait of Sicily/NW Ionian Sea, and/or the distal ends of the Po/Nile/Rhône River plumes. At these stations, surface waters are characterized by (relative to the other regime) higher productivity associated with lower sea-surface temperature, salinity, and lower bottom water oxygen concentrations (Selenopemphix nephroides, Echinidinium spp., Selenopemphix quanta, Quinquecuspis concreta, Brigantedinium spp. and Lingulodinium machaerophorum). Based on both the absolute and relative abundances, Selenopemphix nephroides is suggested to be a suitable indicator to trace changes in the trophic state of the upper waters. The distribution of Lingulodinium machaerophorum is related to the presence of river-influenced surface waters, notably the Nile River. We suggest that this species might form a suitable marker to trace past variations in river discharge, notably from the Nile.
Resumo:
Late Quaternary sediments recovered in a core from the area of the Zaire Fan, Central Africa, were analyzed for clay mineral composition in order to reconstruct fluctuations in the sediment input and freshwater discharge of the Zaire River. Clay mineral assemblages are dominated by kaolinite and smectite, which both originate mainly from the Zaire River and contain only minor contributions of eolian dust. Smectite crystallinity and chemical character of illites (Fe, Mg- or Al-rich) are used to track sediment input from the Zaire River and assess fluctuations in the freshwater discharge. Both parameters record a high-latitude forcing of river runoff at 100 ka periodicities reflecting glacial aridity and increased runoff during interglacials 1, 5 and 7. This signal is also observed in kaolinite/smectite ratios which represent the extension and intensity of the freshwater plume of the Zaire River. Clay mineral proxies reveal that river discharge and associated sediment input fluctuated in tune with precessional cycles of African monsoon intensity. Increased eolian input of kaolinite-rich dust with intensified northeast trades during glacials flattens the precessional signal in kaolinite/smectite ratios.
Resumo:
High-resolution proxy data analyzed on two high-sedimentation shallow water sedimentary sequences (PO287-26B and PO287-28B) recovered off Lisbon (Portugal) provide the means for comparison to long-term instrumental time series of marine and atmospheric parameters (sea surface temperature (SST), precipitation, total river flow, and upwelling intensity computed from sea level pressure) and the possibility to do the necessary calibration for the quantification of past climate conditions. XRF Fe is used as proxy for river flow, and the upwelling-related diatom genus Chaetoceros is our upwelling proxy. SST is estimated from the coccolithophore-synthesized alkenones and Uk'37 index. Comparison of the Fe record to the instrumental data reveals its similarity to a mean average run of the instrumentally measured winter (JFMA) river flow on both sites. The upwelling diatom record concurs with the upwelling indices at both sites; however, high opal dissolution, below 20-25 cm, prevents its use for quantitative reconstructions. Alkenone-derived SST at site 28B does not show interannual variation; it has a mean value around 16°C and compares quite well with the instrumental winter/spring temperature. At site 26B the mean SST is the same, but a high degree of interannual variability (up to 4°C) appears to be determined by summer upwelling conditions. Stepwise regression analyses of the instrumental and proxy data sets provided regressions that explain from 65 to 94% of the variability contained in the original data, and reflect spring and summer river flow, as well as summer and winter upwelling indices, substantiating the relevance of seasons to the interpretation of the different proxy signals. The lack of analogs and the small data set available do not allow quantitative reconstructions at this time, but this might be a powerful tool for reconstructing past North Atlantic Oscillation conditions, should we be able to find continuous high-resolution records and overcome the analog problem.