40 resultados para m-sequences
Resumo:
At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds (black shales) were found to have significantly lower delta15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have delta15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphoric zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment.
Resumo:
The recovery from the North Atlantic (Site 611) of a continuous Pleistocene sedimentary record with a siliceous microfaunal component made it possible to compare the high-latitude abundance pattern of the radiolarian species Cycladophora davisiana in the Atlantic with that produced from analyses of a high-latitude record (Site 580) from the northwest Pacific. Previous studies had shown that the late Pleistocene (0-0.45 Ma) abundance variations of this species in these high-latitude regions were similar. Cycladophora davisiana maxima in the North Atlantic record reach abundance levels three to four times higher than C. davisiana maxima registered in sediments from the northwest Pacific site. This difference in magnitude of abundance peaks is most likely an effect of the more northerly location of Site 611 (53°N) compared with that of Site 580 (42°N), since high-latitude time-slice studies have shown a direct relationship between increasing latitude and C. davisiana abundance. Discontinuous preservation of radiolarians in sediments from North Atlantic Site 611 allows only tentative correlation of the North Atlantic and northwest Pacific C. davisiana abundance curves. These correlations are confined to those portions of the cores where ages are tightly constrained by magnetic boundaries, and to intervals with comparable sedimentation rates.
Resumo:
High-resolution proxy data analyzed on two high-sedimentation shallow water sedimentary sequences (PO287-26B and PO287-28B) recovered off Lisbon (Portugal) provide the means for comparison to long-term instrumental time series of marine and atmospheric parameters (sea surface temperature (SST), precipitation, total river flow, and upwelling intensity computed from sea level pressure) and the possibility to do the necessary calibration for the quantification of past climate conditions. XRF Fe is used as proxy for river flow, and the upwelling-related diatom genus Chaetoceros is our upwelling proxy. SST is estimated from the coccolithophore-synthesized alkenones and Uk'37 index. Comparison of the Fe record to the instrumental data reveals its similarity to a mean average run of the instrumentally measured winter (JFMA) river flow on both sites. The upwelling diatom record concurs with the upwelling indices at both sites; however, high opal dissolution, below 20-25 cm, prevents its use for quantitative reconstructions. Alkenone-derived SST at site 28B does not show interannual variation; it has a mean value around 16°C and compares quite well with the instrumental winter/spring temperature. At site 26B the mean SST is the same, but a high degree of interannual variability (up to 4°C) appears to be determined by summer upwelling conditions. Stepwise regression analyses of the instrumental and proxy data sets provided regressions that explain from 65 to 94% of the variability contained in the original data, and reflect spring and summer river flow, as well as summer and winter upwelling indices, substantiating the relevance of seasons to the interpretation of the different proxy signals. The lack of analogs and the small data set available do not allow quantitative reconstructions at this time, but this might be a powerful tool for reconstructing past North Atlantic Oscillation conditions, should we be able to find continuous high-resolution records and overcome the analog problem.
Resumo:
Cape Roberts Project drillcore 1 was obtained from Roberts Ridge, a sea-floor high located at 77°S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 147 m long with the upper 43.15 metres below the sea floor (revised figure) being dated as Quarternary and the older part of the sequence being Miocene. The core includes nine facies: sandy diamict, muddy diamict, gravel/conglomerate, mud(stone), clay(stone) and carbonate. These facies occure in associations that are repeated in particulare sequences throughout the core, and are interpreted as representing different depositional environments through time. Seven lithofacies associations are interpreted as representing offshore shelf, ice protected/below wave-base; prodeltaic/offshore shelf; delta front/sandy shelf; ice system; subglacial till/rainout diamict/debris flow diamicts singly or in combination; and a carbonate-rich shelf bank. The facies associations are used to infer that the Quaternary section represents deposition on a polar shelf with perhaps two or three glacial fluctuations. The Quaternary carbonate unit indicates a period of ice sheet retreat, but local glacial activity may have increased with an increase in costal precipitation. The Miocene section represents polythermal glacial systems. The older Miocene section is glacially dominated whereas the younger section is much less so. The glacially dominated section may provide evidence for a major glacial advance thar resulted un a low stand of global eustatic sea level at that time. After the low stand, eustatic sea level was gradually rising during deposition of the younger section dominated more by non-glacial processes.
Resumo:
Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).
Resumo:
New radiogenic isotope and trace element data are presented for the volcanic sequences along 600 km of the active Izu-Bonin arc, the Oligocene Izu arc, and their associated rift basins. As with many intra-oceanic island arcs, the Pliocene-Recent Izu-Bonin frontal-arc lavas are highly depleted in Zr, Nb and the rare-earth elements relative to typical mid-ocean ridge basalt (MORB), indicating that the mantle wedge source has undergone a previous episode of melting. Ratios between these elements (such as Nb/Zr and La/Sm), as well as 143Nd/144Nd, do not vary significantly along the length of the frontal-arc. These parameters suggest that each of the arc volcanoes is derived from similar melt fractions of the mantle wedge. However, Ba/Zr, Ba/Rb and 87Sr/86Sr increase along the frontal-arc to the north. This leads us to propose that a variable enrichment in Ba and radiogenic Sr is superimposed on the mantle wedge. Sr-Nd and Pb-Nd isotope variation indicate that both Sr and Pb become more radiogenic after fluid addition. However, Pb isotope ratios do not correlate with increases in Pb concentration or ratios such as Ba/Zr and Nb/Pb. In other words, the Pb isotopic composition of the arc lavas appears to be independent of the amount of Pb introduced by subduction fluids into the mantle source. This buffering of Pb isotopes along the frontal-arc means that the isotopic composition of the lavas is indistinguishable from that of the fluid. Isotopic mixing models presented for the arc are only illustrative of the many plausible combinations of components and quantities. Despite this, we are able to determine that the mantle wedge has isotopic characteristics similar to Indian Ocean MORB, and that the subduction-fluid solute is primarily derived from subducted oceanic basalt with a <2% contribution from subducted sediment. Lavas in the Oligocene Izu arc and fore-arc basin were derived from a mantle wedge of similar composition to the active arc. Despite levels of Pb enrichment comparable to those of the modern arc, the Pb isotopes of the Oligocene volcanics indicate a lower sediment input into the melting region.
Resumo:
For the reconstruction of sea-ice variability, a biomarker approach which is based on (1) the determination of sea-ice diatom-specific highly-branched isoprenoid (IP25) and (2) the coupling of phytoplankton biomarkers and IP25 has been used. For the first time, such a data set was obtained from an array of two sediment traps deployed at the southern Lomonosov Ridge in the central Arctic Ocean at water depth of 150 m and 1550 m and recording the seasonal variability of sea ice cover in 1995/1996. These data indicate a predominantly permanent sea ice cover at the trap location between November 1995 and June 1996, an ice-edge situation with increased phytoplankton productivity and sea-ice algae input in July/August 1996, and the start of new-ice formation in late September. The record of modern sea-ice variability is then used to better interpret data from sediment core PS2458-4 recovered at the Laptev Sea continental slope close to the interception with Lomonosov Ridge and recording the post-glacial to Holocene change in sea-ice cover. Based on IP25 and phytoplankton biomarker data from Core PS2458-4, minimum sea-ice cover was reconstructed for the Bølling/Allerød warm interval between about 14.5 and 13 calendar kyr BP, followed by a rapid and distinct increase in sea-ice cover at about 12.8 calendar kyr BP. This sea-ice event was directly preceded by a dramatic freshwater event and a collapse of phytoplankton productivity, having started about 100 years earlier. These data are the first direct evidence that enhanced freshwater flux caused enhanced sea-ice formation in the Arctic at the beginning of the Younger Dryas. In combination with a contemporaneous, abrupt and very prominent freshwater/meltwater pulse in the Yermak Plateau/Fram Strait area these data may furthermore support the hypothesis that strongly enhanced freshwater (and ice) export from the Arctic into the North Atlantic could have played an important trigger role for the onset of the Younger Dryas cold reversal. During the Early Holocene, sea-ice cover steadily increased again (ice-edge situation), reaching modern sea-ice conditions (more or less permanent sea-ice cover) probably at about 7-8 calendar kyr BP.