62 resultados para large spatial scale
Resumo:
This data set contains aboveground plant biomass in 2003 (Sown plant community, Weed plant community, and Dead plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2003 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), and detached dead plant material (i.e., dead plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2010 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2010 plot size was reduced to 1 x 1 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2010 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 1 rectangle of 0.2 x 0.5 m per plot. The location of this rectangle was in the center of the plot area. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed.
Resumo:
This data set contains aboveground plant biomass in 2005 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2005 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2006 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2006 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2007 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2007 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2008 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2008 plot size was reduced to 2.5 x 2.5 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2008 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2009 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2008 plot size was reduced to 2.5 x 2.5 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2009 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was in the center of the plot area. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2002 (Sown plant community; measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2002 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. From the harvested biomass only the separated biomass of the sown plant species was kept. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2004 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2004 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
The North Water (NOW) Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada) at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1) sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS)) and (2) thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison with MODIS data (thin-ice thickness < 20 cm) shows that the wintertime polynya area estimates derived by MODIS are about 30 to 40% higher than those derived using the polynya signature simulation method (PSSM) with AMSR-E data. In turn, the difference in polynya area between PSSM and a sea ice concentration (SIC) threshold of 70% is fairly low (approximately 10%) when applied to AMSR-E data. For the coarse-resolution SSM/I-SSMIS data, this difference is much larger, particularly in November and December. Instead of a sea ice concentration threshold, the PSSM method should be used for SSM/I-SSMIS data. Depending on the type of cloud-cover correction, the calculated ice production based on MODIS data reaches an average value of 264.4 ± 65.1 km**3 to 275.7 ± 67.4 km**3 (2002/2003 to 2014/2015) and shows a high interannual variability. Our achieved long-term results underline the major importance of the NOW polynya considering its influence on Arctic ice production and associated atmosphere/ocean processes.
Resumo:
Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.
Resumo:
Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.
Resumo:
The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.
Resumo:
The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.
Resumo:
Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO2 (pCO2) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high pCO2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa (Pocillopora damicornis and massive Porites) and two calcified algae (Porolithon onkodes and Halimeda macroloba) under 400, 700 and 1000 µatm pCO2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high pCO2, but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific.