746 resultados para basin analysis
Resumo:
We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.
Resumo:
We investigated surficial sediments for physico-chemical composition from numerous sites of seven study areas in the manganese nodule field of the northern Peru Basin as part of a deep-sea environmental study. Major results from this study are strong variability with respect to water depth, productivity in surface waters, locality, bottom water flow, and seafloor topography. Sediment sites are located mostly in 3900 to 4300 m water depth between the lysocline and the carbonate compensation depth (CCD). Large fluctuations in carbonate content (0% to 80%) determine sediment density and compressional-wave velocity, and, by dilution, contents of opal and non-biogenic material. Mass accumulation rates of biogenic components as well as geochemical proxies (barium and phosphorus) distinguish areas of higher productivity in the northwest near equatorial upwelling and in the northeast close to coastal upwelling, from areas of lower productivity in the west and south. Comparisons between the central Peru Basin area (Discol) and western Peru Basin area (Sediperu) reveals, for the Sediperu area, a shallower CCD, more carbonate but less opal, organic carbon, and non-biogenic material in sediments at the same water depth as well as larger down-core fluctuations of organic carbon and MnO2. Bottom water flow in the abyssal hill topography causes winnowing of material from summits of seamounts and ridges, where organic carbon preservation is poor, to basins where organic carbon preservation is better. Down-core measurements in box cores indicate a three-fold division in the upper 50 cm of the sediment column. An uppermost semi-liquid top layer is dark brown, 5-15 cm thick and contains most of the ferro-manganese nodules. A 5-15 cm thick transition zone of light sediment color has increasing shear strength, lowest opal contents and compressional-wave velocities, but highest carbonate contents and sediment densities. The lowermost layer contains stiffer light gray sediments.
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
Cape Roberts Project drill core 2/2A was obtained from Roberts Ridge, a sea-floor high located at 77° S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 624 m long and includes strata dated as being Quaternary, Pliocene, Miocene and Oligocene in age. The core includes twelve facies commonly occurring in associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf with minor iceberg influence, outer shelf-inner shelf-nearshore to shoreface under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. Changes in palaeoenvironmental interpretations up the core are used to estimate relative glacial proximity to the site through time. These inferred glacial fluctuations are then compared with the global eustatic sea level and d18O curves to evaluate the potential of glacial fluctuations on Antarctica influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences especially in possible number (and perhaps magnitude) of glacial fluctuations that require further evaluation.
Resumo:
This paper concentrates on the Early Oligocene palaeoclimate of the southern part of Eastern and Central Europe and gives a detailed climatological analysis, combined with leaf-morphological studies and modelling of the palaeoatmospheric CO2 level using stomatal and d13 C data. Climate data are calculated using the Coexistence Approach for Kiscellian floras of the Palaeogene Basin (Hungary and Slovenia) and coeval assemblages from Central and Southeastern Europe. Potential microclimatic or habitat variations are considered using morphometric analysis of fossil leaves from Hungarian, Slovenian and Italian floras. Reconstruction of CO2 is performed by applying a recently introduced mechanistic model. Results of climate analysis indicate distinct latitudinal and longitudinal climate patterns for various variables which agree well with reconstructed palaeogeography and vegetation. Calculated climate variables in general suggest a warm and frost-free climate with low seasonal variation of temperature. A difference in temperature parameters is recorded between localities from Central and Southeastern Europe, manifested mainly in the mean temperature of the coldest month. Results of morphometric analysis suggest microclimatic or habitat difference among studied floras. Extending the scarce information available on atmospheric CO2 levels during the Oligocene, we provide data for a well-defined time-interval. Reconstructed atmospheric CO2 levels agree well with threshold values for Antarctic ice sheet growth suggested by recent modelling studies. The successful application of the mechanistic model for the reconstruction of atmospheric CO2 levels raises new possibitities for future climate inference from macro-flora studies.
Resumo:
The upper Miocene to Pleistocene sediments recovered at ODP Sites 745 and 746 in the Australian-Antarctic Basin are characterized by cyclic facies changes. Sedimentological investigations of a detailed Quaternary section reveal that facies A is dominated by a high content of siliceous microfossils, a relatively low terrigenous sediment content, an ice-rafted component, low concentrations of fine sediment particles, and a relatively high smectite content. This facies corresponds to interglacial sedimentary conditions. Facies B, in contrast, is characteristic of glacial conditions and is dominated by a large amount of terrigenous material and a smaller opaline component. There is also a prominent ice-rafted component. The microfossils commonly are reworked and broken. The clay mineral assemblages show higher proportions of glacially derived illite and chlorite. A combination of four different processes, attributed to glacial-interglacial cycles, was responsible for the cyclic facies changes during Quaternary time: transport by gravity, ice, and current and changes in primary productivity. Of great importance was the movement of the grounding line of the ice shelves, which directly influenced the intensity of ice rafting and of gravitational sediment transport to the deep sea. The extension of the ice shelves was also responsible for the generation of cold and erosive Antarctic Bottom Water, which controlled the grain-size distribution, particularly of the fine fraction, in the investigated area.
Resumo:
Organic geochemical and petrological investigations were carried out on Cenomanian/Turonian black shales from three sample sites in the Tarfaya Basin (SW Morocco) to characterize the sedimentary organic matter. These black shales have a variable bulk and molecular geochemical composition reflecting changes in the quantity and quality of the organic matter. High TOC contents (up to 18wt%) and hydrogen indices between 400 and 800 (mgHC/gTOC) indicate hydrogen-rich organic matter (Type I-II kerogen) which qualifies these laminated black shale sequences as excellent oil-prone source rocks. Low Tmax values obtained from Rock-Eval pyrolysis (404-425 MC) confirm an immature to early mature level of thermal maturation. Organic petrological studies indicate that the kerogen is almost entirely composed of bituminite particles. These unstructured organic aggregates were most probably formed by intensive restructuring of labile biopolymers (lipids and/or carbohydrates), with the incorporation of sulphur into the kerogen during early diagenesis. Total lipid analyses performed after desulphurization of the total extract shows that the biomarkers mostly comprise short-chain n-alkanes (C16-C22) and long-chain (C25-C35) n-alkanes with no obvious odd-over-even predominance, together with steranes, hopanoids and acyclic isoprenoids. The presence of isorenieratane derivatives originating from green sulphur bacteria indicates that dissolved sulphide had reached the photic zone at shallow water depths (~100m) during times of deposition. These conditions probably favoured intensive sulphurization of the organic matter. Flash pyrolysis GC-MS analysis of the kerogen indicates the aliphatic nature of the bulk organic carbon. The vast majority of pyrolysis products are sulphur-containing components such as alkylthiophenes, alkenylthiophenes and alkybenzothiophenes. Abundant sulphurization of the Tarfaya Basin kerogen resulted from excess sulphide and metabolizable organic matter combined with a limited availability of iron during early diagenesis. The observed variability in the intensity of OM sulphurization may be attributed to sea level-driven fluctuations in the palaeoenvironment during sedimentation.
Resumo:
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar/39Ar ages determined in this study for two Leg 129 basalts average 114.6 +/- 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites (87Sr/86Sr init = 0.70360-0.70374; 143Nd/144Nd init = 0.512769-0.512790; 206Pb/204Pb meas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 +/- 1.0 Ma 40Ar/39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific.
Resumo:
Pore water and solid phase from surface sediments of the continental slope off Uruguay and from the Argentine Basin (southwestern Atlantic) were investigated geochemically to ascribe characteristic early diagenetic reactions of iron and manganese. Solid-phase iron speciation was determined by extractions as well as by Mössbauer spectroscopy. Both methods showed good agreement (<6% deviation) for total-Fe speciation. The proportion of easy reducible iron oxyhydroxide relative to total-Fe oxides decreased from the continental slope to the deep sea which is attributed to an increase in crystallinity during transport as well as to a general decrease of iron mobilization. The product of iron reoxidation is Fe oxyhydroxide which made up less than 5% of total Fe. In addition to this fraction, a proportion of smectite bound iron was found to be redox reactive. This fraction made up to 10% of total Fe in sediments of the Argentine Basin and was quantitatively extracted by 1 N HCl. The redox reactive Fe(+II) fraction of smectite was almost completely reoxidized within 24 h under air atmosphere and may therefore considerably contribute to iron redox cycling if bioturbation occurs. In the case of the slope sediments we found concurrent iron and manganese release to pore water. It is not clear whether this is caused by dissimilatory iron and manganese reduction at the same depth or dissimilatory iron reduction alone inducing Mn(+IV) reduction by (abiotic) reaction with released Fe2+. The Argentine Basin sediment showed a significant manganese solid-phase enrichment above the denitrification depth despite the absence of a distinct pore-water gradient of Mn. This implies a recent termination of manganese mobilization and thus a non-steady-state situation with respect to sedimentation or to organic carbon burial rate.
Resumo:
Lithological, geochemical, stratigraphic, and paleoecological features of carbonaceous sediments in the Late Jurassic Volgian Basin of the East European Platform (Kostroma Region) are considered. The shale-bearing sequence studied is characterized by greater sedimentological completeness as compared with its stratotype sections in the Middle Volga region (Gorodishche, Kashpir). Stratigraphic position and stratigraphy of the shale-bearing sequence, as well as distribution of biota in different sedimentation settings are specified. It is shown that Volgian sediments show distinct cyclic structure. The lower and upper elements of cyclites consist of high-carbonaceous shales and clayey-calcareous sediments, respectively, separated by transitional varieties. Bioturbation structures in different rocks are discussed. Microcomponent composition and pyrolytic parameters of organic matter, as well as distribution of chemical elements in lithologically variable sediments are analyzed. Possible reasons responsible for appearance of cyclicity and accumulation of organic-rich sediments are discussed.
Resumo:
Leg 61 of the Deep Sea Drilling Project (DSDP) was concerned with drilling a single continuously cored multiple re-entry hole at site 462 in the Central Nauru Basin (Fig. 1). Preliminary results of this drilling, which penetrated more than 1 km beneath the sea floor, were presented earlier. One major result was the discovery of a late Cretaceous off-ridge volcanic/intrusive complex of basaltic composition and great thickness (>500 m). We now present trace element abundance data for these basalts. Results of the drilling provide further support for a relatively long-lived thermal and magmatic event in the late Cretaceous resulting in voluminous and widespread magmatism in the central and western Pacific consistent with earlier suggestions. The trace element data show that most of the rocks produced during this event have trace element characteristics intermediate between those of normal and transitional mid-ocean ridge basalts (N- and T-type MORB) and different from Hawaiian basalts. These results indicate that basalts which are depleted in light rare earth elements (LREE) relative to the heavy REE may, in certain conditions, be erupted as voluminous intra-plate eruptions far from active ridge crests.