33 resultados para Transition To Detonation
Resumo:
The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.
Resumo:
The work carried out by the physical oceanography group on POLARSTERN Leg ANT-V/3 concentrated on four major topics: A. A large scale survey of the eastern boundary between the Weddell gyre and the open ocean. On the way to the coastal polynya in early October 12 CTD stations were carried out between 54°30'S, 6°E and 70°30'S 8°W. Another set of 16 stations was obtained in early December on the way back north. During this transsect three current meter moorings were recovered at Maud Rise. The path between the current meter arrays was used to run an additional section to the NNE across the top of Maud Rise. B. A large scale survey of the Antarctic Coastal Current along the eastern shelf area. To obtain the water mass characteristics along the eastern Weddell shelf 36 CTD stations were carried out between Atka Bay and the Filchner Trench. Most of the stations were located on the shelf. Cross shelf sections were obtained both near Drescher Inlet and off Halley Bay, in the divergence area of the Coastal Current where the continental slope turns to the west and south of Vestkapp at Neptune's Point. A longshore section over 120 km was run north of Vestkapp. C. A mesoscale survey of the Antarctic Coastal Current off Drescher Inlet. The experimental work consisted of 37 CTD-stations and direct current measurements. The CTD-profiles were grouped into seven sections perpendicular to the coast line off Drescher Inlet extending once over 70 km but normally over 35 km. The profile depth ranged from 300 m on one section to the complete water column at two sections. Most sections consist of five stations providing highest resolution over the upper continental slope with offshore increasing spacing. The stations were chosen to represent the shelf (450 m), the shelf break (800 m), the upper slope (1600 m), the lower slope (2400 m) and the transition to the abyssal plain (3400 m). Rough topography and difficult ice conditions made it impossible to meet those requirements in all cases. D. A small scale survey of the hydrographic conditions under the sea ice. The motivation for these studies arose during the cruise. Consequently a suitable Instrumentation had to be developed at sea. This was done with a NB-Smart CTD which was inserted on an L-shaped lever through a hole in the ice. However, various water intrusions into the instrument resulted in the failure of this technique. In consequence a special lever system was built to position a NB Mark 3b weighing about 40 kg below the ice. Twenty four profiles were obtained reaching from the bottom of the ice down to 2 m below the ice surface with a maximum distance of 1 m from the entry hole. As the conductivity sensor was influenced by nearby ice platelets, salinity samples where drawn to check the sensor.
Resumo:
The Pliocene-Pleistocene history of CaCO3 preservation in the central equatorial Pacific is reconstructed from a suite of deep-sea cores and is compared to fluctuations in global ice volume inferred from delta18O records. The results are highlighted by: (1) a strong covariation between CaCO3 preservation and ice volume over 104 to 106 year time scales; (2) a long-term increase in ice volume and CaCO3 preservation since 3.9 Ma demonstrated by a deepening of the lysocline and the carbonate critical depth; (3) a dramatic shift to greater CaCO3 preservation at 2.9 Ma; (4) distinctive ice-volume growth and CaCO3 preservation events at 2.4 Ma, which are associated with the significant intensification of northern hemisphere glaciation; (5) a mid-Pleistocene transition to 100-kyr cyclicity in both CaCO3 preservation and ice volume; and (6) a 600-kyr Brunhes dissolution cycle superimposed on the late Pleistocene glacial/interglacial 100-kyr cycles. CaCO3 preservation primarily reflects the carbonate chemistry of abyssal waters and is controlled by long-term (106 year) and short-term (104 to 105 year) biogeochemical cycling and by distinct paleoclimatic events. We attribute the long-term increase in CaCO3 preservation primarily to a fractionation of CaCO3 deposition from continental shelf to ocean basin, and secondarily to a gradual rise in the riverine and glaciofluvial flux of Ca++. On shorter time scales, the fluctuations in CaCO3 preservation slightly lag ice volume fluctuations and are attributed to climatically induced changes in the circulation and chemistry of Pacific deep water.