54 resultados para TERTIARY-AMINES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Oligocene to Pliocene section from Hole 628A supplied about 100 species of Tertiary ostracodes. Deep-sea psychrospheric? species (Bradleya cf. dictyon, Agrenocythere cf. gosnoldia, Cardobairdia spp., Henryhowella sp., Cytheropteron spp., etc.) are present throughout the section. Starting in the Miocene, neritic species (Hulingsina sp., Puriana spp., Caudites spp., Loxoconcha fischeri, Cytherelloidea sp., etc.) dominate. Redeposition of these species from the continental shelf seems to be penecontemporaneous with sedimentation. Variations in the assemblages indicate biostratigraphic position. Species having an ecologic or stratigraphic importance are discussed and illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron activation analyses of iridium and other chemical elements were performed across a 1-m-thick, partly nonbioturbated, clay-rich interval at the Cretaceous/Tertiary boundary in ODP Hole 738C. The results show that the boundary interval holds one of the highest Ir enrichments (320 ng Ir/cm2) of all known Cretaceous/Tertiary boundary layers. Iridium concentrations are highest (18 ppb Ir, whole-rock samples) a few centimeters above the base of the clayrich interval and gradually tail off upsection. Compared with background levels the most Ir-rich interval also shows strongly enhanced concentrations of Cr (215 ppm) and slightly elevated Co concentrations (13 ppm). The Ir-rich interval shows low As (< 15 ppm) and Sb (<0.8 ppm) concentrations, a fact that is congruent with absence of abundant authigenic sulfides in the sediment. Irregularly distributed Fe enrichments and a greenish gray color of the Fe-rich intervals may indicate the presence of glauconitic clay minerals and suboxic, slightly reducing conditions during deposition. Rare earth element (REE) abundance patterns change considerably across the Cretaceous/Tertiary boundary interval, reflecting either a change in Cretaceous/Tertiary boundary seawater REE composition or the occurrence of different REE fractionation processes due to changing depositional environment. Element-vs.-element ratios of Hf, Ta, Th, U, Cs, and Sc are similar between the most Ir-rich layers of the boundary section and other levels with lower Ir concentrations. This may imply that the clay fraction of the Ir-rich layers of the Cretaceous/Tertiary boundary interval is made up predominantly of locally derived material. Calculated calcite-free abundances of Hf, Ta, Th, U, Cs, and Sc, on the other hand, are reconcilable with an extraneous origin of the bulk of the clay in the most Ir-rich layers. The Ir in the Cretaceous/Tertiary boundary clay-rich zone in Hole 738C is most likely derived from an earth-impacting asteroid; however, the origin of the clay-rich zone remains enigmatic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study of ODP Hole 689B no iridium (Ir) anomaly was found in Sections 1 through 6 of Core 25X or in Core 26X from the top down to section 2, 3-12 cm. The background Ir abundance averaged 11 parts per trillion (ppt) and a clay-enriched region had nearly the same average, 26 ± 12 ppt. If the Cretaceous-Tertiary (K-T) contact is in the region studied, then sedimentation was not continuous, and the K-T boundary was probably either not deposited or it was eroded away. In a study of Cores 15X and 16X of ODP Hole 690C, an iridium peak with a maximum abundance of 1566 ± 222 ppt was found in Section 4 of Core 15X at 39-40 cm with a half-width of 6.6 cm. Background abundances were ~15 ppt and distinctly higher Ir abundances were observed from 119 cm below to 72 cm above the main peak. The Ir distribution below the main peak is attributed to bioturbation by organisms with burrows extending at least 0.4 m. The Ir distribution above the main peak may be due to the same cause but other explanations may be significant. There are variable enrichments of clay in the mainly CaCO3 sediment of Core 15X, and the stratigraphically lowest part of the most abundant clay deposits is found (within 2 cm) in the same position as the main Ir peak. The clay deposit, which is estimated to be about 50% of the sediment, extends upward ~19 cm and then slowly decreases to a background level of 10% over 1 m. The degree of homogeneity of the clay-rich interval suggests it was not due to episodic volcanism but may have been due to a decrease of the CaCO3 deposition rate which was possibly triggered by the impact of a large asteroid or comet on the Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In low and middle latitudes, the Cretaceous/Tertiary boundary is marked by a sudden and pronounced decrease in d13C values of near-surface-water carbonates and a reduction in the surface-to-bottom d13C gradient. These isotopic data have been interpreted as evidence of a decline in surface-water productivity that was responsible for the extinction of many planktic foraminiferal species and other marine organisms at or near the K/T boundary. We present planktic and benthic foraminiferal isotopic data from two almost biostratigraphically complete sections at Ocean Drilling Program Site 738 in the antarctic Indian Ocean and at Nye Kløv in Denmark. These data suggest that planktic carbonate d13C values in high latitudes may not have decreased dramatically at the K/T boundary; thus, surface-water productivity may not have been reduced as much as in low and middle latitudes. Comparison of the records of Site 738 with those of ODP Sites 690 and 750 indicates a pronounced decline in d13C values of planktic and benthic foraminifera and fine-fraction/bulk carbonate ~200 000 yr after the K/T boundary. This reflects a regional shift in the carbon isotopic composition of oceanic total dissolved carbon (TDC) and correlates with a similar change in benthic foraminiferal d13C values at mid- and low-latitude Deep Sea Drilling Project Sites 527 and 577. This oceanographic event was followed by the ecosystem's global recovery ~500 000 yr after the K/T boundary. These data suggest that the environmental effects of the K/T boundary may have been less severe in the high-latitude oceans than in tropical and subtropical regions.