40 resultados para Shirley


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45° and 60°N, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12°C. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by CLIMAP Project Members (CLIMAP) [1981]. The zonal belt of minimum SST seasonality between 2° and 6°N suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6°-8°C during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37[k]- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he separate roles of oceanic heat advection and orbital forcing on influencing early Holocene temperature variability in the eastern Nordic Seas is investigated. The effect of changing orbital forcing on the ocean temperatures is tested using the 1DICE model, and the 1DICE results are compared with new and previously published temperature reconstructions from a transect of five cores located underneath the pathway of Atlantic water, from the Faroe-Shetland Channel in the south to the Barents Sea in the north. The stronger early Holocene summer insolation at high northern latitudes increased the summer mixed layer temperatures, however, ocean temperatures underneath the summer mixed layer did not increase significantly. The absolute maximum in summer mixed layer temperatures occurred between 9 and 6 ka BP, representing the Holocene Thermal Maximum in the eastern Nordic Seas. In contrast, maximum in northward oceanic heat transport through the Norwegian Atlantic Current occurred approximately 10 ka BP. The maximum in oceanic heat transport at 10 ka BP occurred due to a major reorganization of the Atlantic Ocean circulation, entailing strong and deep rejuvenation of the Atlantic Meridional Overturning Circulation, combined with changes in the North Atlantic gyre dynamic causing enhanced transport of heat and salt into the Nordic Seas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of essential elements closely related to each other are involved in the Earth's climatic system. The temporal and spatial distribution of insolation determines wind patterns and the ocean's thermohaline pump. In turn, these last two are directly linked to the extension and retreat of marine and continental ice and to the chemistry of the atmosphere and the ocean. The variability of these elements may trigger, amplify, sustain or globalize rapid climatic changes. Paleoclimatic oscillations have been identified in this thesis by using fossil organic compounds synthesized by marine and terrestrial flora. High sedimentation rate deposits at the Barents and the Iberian peninsula continental margins were chosen in order to estimate the climatic changes on centennial time resolution. At the Barents margin, the sediment recovered was up to 15,000 years old (unit ''a'', from latin ''annos'') (M23258; west of the Bjørnøya island). At the Iberian margin, the sediment cores studied covered a wide range of time spans: up to 115,000 a (MD99-2343; north of the Minorca island), up to 250,000 a (ODP-977A; Alboran basin) and up to 420,000 a (MD01-2442, MD01-2443, MD01-2444, MD01-2445; close to the Tagus abyssal plain). At the northern site, inputs containing marine, continental and ancient reworked organic matter provided a detailed reconstruction of climate history at the time of the final retreat of the Barents ice sheet. At the western Barents continental slope, warm climatic conditions were observed during the early Holocene (~from 8,650 a to 5,240 a ago); in contrast, an apparent long-term cooling trend occurred in the late Holocene (~from 5,240 a to 760 a ago), in consistence with other paleoarchives from northern and southern European latitudes. The Iberian margin sites, which were never covered with large ice sheets, preserved exceptionally complete sequences of rapid events during ice ages hitherto not studied in such great detail: during the last glacial (~from 70,900 a to 11,800 a ago), the second glacial (~from 189,300 a to 127,500 a ago), the third ice age (~from 278,600 a to 244,800 a ago) and the fourth (~from 376,300 a to 337,500 a ago). In this thesis, crucial research questions were brought up concerning the severity of different glacial periods, the intensity and rates of the recorded oscillations and the long distance connections related to rapid climate change. The data obtained provide a sound basis to further research on the mechanisms involved in this rapid climate variability. An essential point of the research was the evidence that, over the past 420,000 a, at the whole Iberian margin, warm and stable long periods similar to the Holocene always ended abruptly in few centuries after a gradual deterioration of climate conditions. The detailed estimate of past climate variability provides clues to the natural end of the present warm period. Returning to an ice age in European lands would be exacerbated by a number of factors: a lack of differential solar heating between northern and southern north Atlantic latitudes, enhanced evaporation at low latitudes, and an increase in snowfall or iceberg discharges at northern regions. It must be emphasized that all climatic oscillations observed in this thesis were caused by forces of nature, i.e. the last two centuries were not taken into consideration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-, i.e. 15-140-yr-resolution climate records from sediment cores 23071, 23074, and PS2644 from the Nordic Seas were used to recon:;truct changes in the surface and deep water circulation during marine isotope stages 1-5.1, i.e. the last 82 000 yr. From this the causal links between the paleoceanographic signals and the Dansgaard-Oeschger events 1-21 revealed in 0180-ice-core records from Greenland were determined. The stratigraphy of the cores is based on the planktic 0180 curves, the minima of which were directly correlated with the GISP2-0180 record, numerous AMS 14C ages, and some ash layers. The planktic d18O and dl3C curves of all three cores reveal numerous meltwater events, the most pronounced of which were assigned to the Heinrich events 1-6. The meltwater events, among other things also accompanied by cold sea surface temperatures and high IRD concentration, correlate with the stadial phases of the Dansgaard-Oeschger cycles and in the western Iceland Sea also to colder periods or abrupt drops in 0180 within a few longer interstadials. Besides being more numerous, the meltwater events also show isotope values lighter in the Iceland Sea than in the central Norwegian Sea, especially if compared to core 23071. This implies a continuous inflow of relative warm Atlantic water into the Norwegian Sea and a cyclonic circulation regime.