41 resultados para Reduction of secondary amides
Resumo:
We investigated the sensitivity of algae towards silver nanoparticles with OECD test medium and lower nutrient concentrations under standard test conditions to improve comparability and to exclude any other confounding factor aside nutrient levels. Two unicellular freshwater microalgae Desmodesmus subspicatus and Raphidocelis subcapitata were chosen due to their status as standard test organisms for the algae growth inhibition test and the response to changes in nutrient supply was compared. The original medium was used as the reference (standard). For the other four media, the amount of either nitrogen or phosphorus in the medium was lowered from half (50%) to one-fourth (25 %) of that of the OECD guideline, resulting in the following media: 50% N, 25% N, 50% P and 25% P medium. As test substance, the OECD reference material NM-300K was used. For this reason, the characterization of AgNP was done using DLS and Absorption spectra (UV/vis). Actual silver concentrations and ionic silver concentrations were measured at the highest test concentration used (100 µg Ag L-1) in R. subcapitata treatments only to reduce the number of samples. All tests were run according to the OECD guideline 201 with sterilized 50 mL cell culture flask. Each medium was tested using the test conditions for culturing with 3 replicates. Test concentrations for both algae species were 0, 25, 50 and 100 µg Ag L-1 for OECD, 50% P and 25% P while for both N reductions, the silver concentrations were 0, 10, 25 and 100 µg Ag L-1. Samples for determining the algal density were taken at every 24 h.
Resumo:
Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.
Resumo:
Diagenesis has extensively affected the magnetic mineral inventory of organic-rich late Quaternary sediments in the Niger deep-sea fan. Changes in concentration, grain size, and coercivity document modifications of the primary magnetic mineral assemblages at two horizons. The first front, the modern iron redox boundary, is characterized by a drastic decline in magnetic mineral content, coarsening of the grain size spectrum, and reduction in coercivity. Beneath a second front, the transition from the suboxic to the sulfidic anoxic domain, a further but less pronounced decrease in concentration and bulk grain size occurs. Finer grains and higher coercive magnetic constituents substantially increase in the anoxic environment. Low- and high-temperature experiments were performed on bulk sediments and on extracts which have also been examined by X-ray diffraction. Thermomagnetic analyses proved ferrimagnetic titanomagnetites of terrigenous provenance as the principal primary magnetic mineral components. Their broad range of titanium contents reflects the volcanogenic traits of the Niger River drainage areas. Diagenetic alteration is not only a grain size selective process but also critically depends on titanomagnetite composition. Low-titanium compounds are less resistant to diagenetic dissolution. Intermediate titanium content titanomagnetite thus persists as the predominant magnetic mineral fraction in the sulfidic anoxic sediments. At the Fe redox boundary, precipitation of authigenic, possibly bacterial, magnetite is documented. The presence of hydrogen sulfide in the pore water suggests a formation of secondary magnetic iron sulfides in the anoxic domain. Grain size-specific data argue for a gradual development of a superparamagnetic and single-domain iron sulfide phase in this milieu, most likely greigite.
Resumo:
1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.