39 resultados para PROTONATION SITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of the Cretaceous Caribbean plateau, including the komatiites of Gorgona, has been linked to the currently active Galápagos hotspot. We use Hf-Nd isotopes and trace element data to characterise both the Caribbean plateau and the Galápagos hotspot, and to investigate the relationship between them. Four geochemical components are identified in the Galápagos mantle plume: two 'enriched' components with epsilon-Hf and epsilon-Nd similar to enriched components observed in other mantle plumes, one moderately enriched component with high Nb/Y, and a fourth component which most likely represents depleted MORB source mantle. The Caribbean plateau basalt data form a linear array in Hf-Nd isotope space, consistent with mixing between two mantle components. Combined Hf-Nd-Pb-Sr-He isotope and trace element data from this study and the literature suggest that the more enriched Caribbean end member corresponds to one or both of the enriched components identified on Galápagos. Likewise, the depleted end member of the array is geochemically indistinguishable from MORB and corresponds to the depleted component of the Galápagos system. Enriched basalts from Gorgona partially overlap with the Caribbean plateau array in epsilon-Hf vs. epsilon-Nd, whereas depleted basalts, picrites and komatiites from Gorgona have a high epsilon-Hf for a given epsilon-Nd, defining a high-epsilon-Hf depleted end member that is not observed elsewhere within the Caribbean plateau sequences. This component is similar, however, in terms of Hf-Nd-Pb-He isotopes and trace elements to the depleted plume component recognised in basalts from Iceland and along the Reykjanes Ridge. We suggest that the Caribbean plateau represents the initial outpourings of the ancestral Galápagos plume. Absence of a moderately enriched, high Nb/Y component in the older Caribbean plateau (but found today on the island of Floreana) is either due to changing source compositions of the plume over its 90 Ma history, or is an artifact of limited sampling. The high-epsilon-Hf depleted component sampled by the Gorgona komatiites and depleted basalts is unique to Gorgona and is not found in the Caribbean plateau. This may be an indication of the scale of heterogeneity of the Caribbean plateau system; alternatively Gorgona may represent a separate oceanic plateau derived from a completely different Pacific plume, such as the Sala y Gomez.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New paleomagnetic and paleontologic data from Pacific DSDP Sites 463 and 167 define the magnetic reversals that predate the Cretaceous Normal Polarity Superchron (K-N). Data from Mid-Pacific Mountain Site 463 provide the first definition of polarity chron M0 in the Pacific deep-sea sedimentary record. Foraminiferal biostratigraphy suggests that polarity chron M0 is contained entirely within the lower Aptian Hedbergella similis Zone, in agreement with foraminiferal data from the Italian Southern Alps and Atlantic Ocean. Nannofossil assemblages also suggest an early Aptian age for polarity chron M0, contrary to results from the Italian Umbrian Apennines and Southern Alps, which place polarity chron M0 on the Barremian-Aptian boundary. Biostratigraphic dating discrepancies caused by the time-transgressive, preservational, or provincial nature of paleontological species might be reconciled by the use of magnetostratigraphy, specifically polarity chron M0 which lies close to the Barremian-Aptian boundary. At Magellan Rise Site 167, five reversed polarity zones are recorded in Hauterivian to Aptian sediments. Correlation with M-anomalies is complicated by synsedimentary and postsedimentary sliding about 25 m.y. after basement formation, producing gaps in, and duplications of, the stratigraphic sequence. The magnitude and timing of such sliding must be addressed when evaluating the stratigraphy of these oceanic-rise environments.