501 resultados para Northern Hemisphere


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon isotopic records from benthic foraminifera are used to map patterns of deep ocean circulation between 3 and 2 million years ago, the interval when significant northern hemisphere glaciation began. The delta18O and delta13C data from four Atlantic sites (552, 607, 610, and 704) and one Pacific site (677) show that global cooling over this interval was associated with increased suppression of North Atlantic Deep Water (NADW) formation. However, the relative strength of NADW production was always greater than is observed during late Pleistocene glaciations when extreme decreases in NADW are observed in the deep North Atlantic. Our data indicate that an increase in the equator-to-pole temperature gradient associated with the onset of northern hemisphere glaciation did not intensify deepwater production in the North Atlantic but rather the opposite occurred. This is not unexpected as it is the "warm high-salinity" characteristic, rather than the "low temperature", of thermocline waters that is critical to the deepwater formation process in this region today.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001, doi:10.1126/science.1059412). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005, doi:10.1029/2004PA001071). Various models (sensu Driscoll and Haug, 1998, doi:10.1126/science.282.5388.436) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, doi:10.1007/s00382-007-0265-6), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present centennial records of sea surface and upper thermocline temperatures in Core MD01-2378 from the Timor Sea, which provide new insights into the variability of the Indonesian outflow across the last two glacial terminations. Mg/Ca in Globigerinoides ruber (white s. s.) indicates an overall increase of 3.2 °C in sea surface temperature (SST) over Termination I. Following an early Holocene plateau at 11.3-6.4 ka, SSTs cooled by 0.6 °C during the middle to late Holocene (6.4-0.7 ka). The early Holocene warming occurred in phase with increasing northern hemisphere summer insolation, coinciding with northward displacement of the Intertropical Convergence Zone, enhanced boreal summer monsoon and expansion of the Indo-Pacific Warm Pool. Thermocline temperatures (Pulleniatina obliquiloculata Mg/Ca) gradually decreased from 24.5 to 21.5 °C since 10.3 ka, reflecting intensification of a cool thermocline throughflow. The vertical structure of the upper ocean in the Timor Sea evolved in similar fashion during the Holocene and MIS5e, although the duration of SST plateaux differed (11.3 to 6.4 ka in Termination I and from 129 to 119 ka in Termination II), which was probably due to the more intense northern hemisphere summer insolation during MIS 5e. During both terminations, SST increased simultaneously in the southern high latitudes and the tropical eastern Indian Ocean, suggesting virtually instantaneous atmospheric climate feedbacks between the high and low latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work is based on samples from Deep-Sea Drilling in the Pacific Ocean and from natural sections in its continental setting. Species composition of planktonic foraminifera from Maastrichtian sediments of the Pacific and South Atlantic oceans, as well as from marginal seas of Australia and New Zealand and epicontinental basins of the northern hemisphere has been analysed. Two main issues: reconstruction of Maastrichtian climatic zonality, and reconstruction of Maastrichtian paleodepths. Four bipolar climatic zones have been distinguished. According to preservation of planktonic foraminifera and composition of their complexes three levels of dissolution have been identified.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sr isotope stratigraphy provides a new age model for the first complete section drilled through a deep-water coral mound. The 155-m-long section from Challenger Mound in the Porcupine Sea-bight, southwest of Ireland, is on Miocene siliciclastics and consists entirely of sediments bearing well-preserved cold-water coral Lophelia pertusa. The 87Sr/86Sr values of 28 coral specimens from the mound show an upward-increasing trend, correspond to ages from 2.6 to 0.5 Ma, and identify a significant hiatus from ca. 1.7 to 1.0 Ma at 23.6 m below seafloor. The age of the basal mound sediments coincides with the intensification of Northern Hemisphere glaciations that set up the modern stratification of the northeast Atlantic and enabled coral growth. Mound growth persisted throughout glacial-interglacial fluctuations, reached a maximum rate (24 cm/k.y.) ca. 2.0 Ma, and ceased at 1.7 Ma. Unlike other buried mounds in Porcupine Seabight, Challenger Mound was only partly covered during its growth interruption, and growth restarted ca. 1.0 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is still an open question how equilibrium warming in response to increasing radiative forcing - the specific equilibrium climate sensitivity S - depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatively little is known in detail about the locations of the early Pleistocene ice-sheets responsible for ice-rafted debris (IRD) inputs to the sub-polar North Atlantic Ocean during intensification of northern hemisphere glaciation (iNHG). To shed new light on this problem, we present the first combined in-depth analysis of IRD flux and geochemical provenance of individual sand-sized IRD deposited in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma), arguably the key glacial during iNHG. IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) of individual ice-rafted (>150 µm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 records a shift from predominantly Archaean-aged circum-North Atlantic Ocean continental sources during early glacial ice-rafting events to dominantly Palaeozoic and Proterozoic-aged sources during full glacial conditions. The distribution of feldspars in Pb-Pb space for full glacial MIS 100 more closely resembles that documented for feldspars deposited at the centre of the last glacial IRD belt (at IODP/DSDP Site U1308/609) during ambient (non-Heinrich-event) ice-rafting episodes of MIS 2 (~23.8 ka) than that documented for MIS 5d (~106 ka). Comparison of our early Pleistocene and last glacial cycle datasets suggests that MIS 100 was characterised by abundant iceberg calving from large ice-sheets on multiple continents in the high northern latitudes (not just on Greenland).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present further %CaCO3 data from Site U1313 across the Pliocene-Pleistocene intensification of Northern Hemisphere glaciation. This data was measured on the U1313 secondary splice. We also present tie points between the primary and secondary splice for this interval based on graphical tuning of L* (sediment lightness).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.