109 resultados para Fabric


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ODP Site 1124, located 600 km east of the North Island of New Zealand, records post-middle Oligocene variations in the Pacific Deep Western Boundary Current (DWBC) and New Zealand's climatic and tectonic evolution. Sediment parameters, such as terrigenous grain size, flux, magnetic fabric, and non-depositional episodes, are used to interpret DWBC intensity and Antarctic climate. Interpretations of DWBC velocities indicate that the Antarctic Circumpolar Current reached modern intensities at ~23 Ma, as the tectonic seaways expanded, completing the thermal isolation of Antarctica. Periods of more intense bottom water formation are suggested by the presence of hiatuses formed under the DWBC at 22.5-17.6, 16.5-15, and 14-11 Ma. The oldest interval of high current intensity occurs within a climatically warm period during which the intensity of thermohaline circulation around Antarctica increased as a result of recent opening of circum-Antarctic gateways. The younger hiatuses represent glacial periods on Antarctica and major fluctuations in the East Antarctic Ice Sheet, whereas intervals around the hiatuses represent times of relative warmth, but with continued current activity. The period between 11 to 9 Ma is characterized by conditions surrounding a high velocity DWBC around the time of the formation and stabilization of the West Antarctic Ice Sheet. The increased terrigenous input may result from either changing Antarctic conditions or more direct sediment transport from New Zealand. The Pacific DWBC did not exert a major influence on sedimentation at Site 1124 from 9 Ma to the present; the late Miocene to Pleistocene sequence is more influenced by the climatic and tectonic history of New Zealand. Despite the apparent potential for increased sediment supply to this site from changes in sediment channeling, increasing rates of mountain uplift, and volcanic activity, terrigenous fluxes remain low and constant throughout this younger period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fabrics of serpentinized peridotites are related to anisomorphic magnetite formed during serpentinization. In the less serpentinized facies they are, however, mainly mimetic of the high temperature deformation prior to serpentinization. In more serpentinized peridotites, the magnetic fabrics, related to magnetite veins which are more developed in this case, are superimposed on mimetic fabrics. Remanent properties, hysteresis loop parameters, and Curie temperatures were measured. Natural remanent magnetizations (NRM) have crystallization remanent magnetic (CRM) origin. Measured magnetic parameters suggest that pseudo-single domain (PSD) grains of magnetite are present in samples with low degree of serpentinization. The samples with high degree of serpentinization contain mainly multi-domain (MD) magnetite grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive high-grade polydeformed metamorphic provinces surrounding Archaean cratonic nuclei in the East Antarctic Shield record two tectono-thermal episodes in late Mesoproterozoic and late Neoproterozoic-Cambrian times. In Western Dronning Maud Land, the high-grade Mesoproterozoic Maud Belt is juxtaposed against the Archaean Grunehogna Province and has traditionally been interpreted as a Grenvillian mobile belt that was thermally overprinted during the Early Palaeozoic. Integration of new U-Pb sensitive high-resolution ion microprobe and conventional single zircon and monazite age data, and Ar-Ar data on hornblende and biotite, with thermobarometric calculations on rocks from the H.U. Sverdrupfjella, northern Maud Belt, resulted in a more complex P-T-t evolution than previously assumed. A c. 540?Ma monazite, hosted by an upper ampibolite-facies mineral assemblage defining a regionally dominant top-to-NW shear fabric, provides strong evidence for the penetrative deformation in the area being of Pan-African age and not of Grenvillian age as previously reported. Relics of an eclogite-facies garnet-omphacite assemblage within strain-protected mafic boudins indicate that the peak metamorphic conditions recorded by most rocks in the area (T = 687-758°C, P = 9·4-11·3?kbar) were attained subsequent to decompression from P > 12·9?kbar. By analogy with limited U-Pb single zircon age data and on circumstantial textural grounds, this earlier eclogite-facies metamorphism is ascribed to subduction and accretion around 565?Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions is ascribed to the intrusion of post-orogenic granite at c. 480?Ma. The recognition of extensive Pan-African tectonism in the Maud Belt casts doubts on previous Rodinia reconstructions, in which this belt takes a pivotal position between East Antarctica, the Kalahari Craton and Laurentia. Evidence of late Mesoproterozoic high-grade metamorphism during the formation of the Maud Belt exists in the form of c. 1035?Ma zircon overgrowths that are probably related to relics of granulite-facies metamorphism recorded from other parts of the Maud Belt. The polymetamorphic rocks are largely derived from a c. 1140?Ma volcanic arc and 1072 ± 10?Ma granite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2011 Tohoku-Oki earthquake demonstrated that the shallowest reaches of plate boundary subduction megathrusts can host substantial coseismic slip that generates large and destructive tsunamis, contrary to the common assumption that the frictional properties of unconsolidated clay-rich sediments at depths less than View the MathML source should inhibit rupture. We report on laboratory shearing experiments at low sliding velocities (View the MathML source) using borehole samples recovered during IODP Expedition 343 (JFAST), spanning the plate-boundary décollement within the region of large coseismic slip during the Tohoku earthquake. We show that at sub-seismic slip rates the fault is weak (sliding friction µs=0.2-0.26), in contrast to the much stronger wall rocks (µs>~0.5). The fault is weak due to elevated smectite clay content and is frictionally similar to a pelagic clay layer of similar composition. The higher cohesion of intact wall rock samples coupled with their higher amorphous silica content suggests that the wall rock is stronger due to diagenetic cementation and low clay content. Our measurements also show that the strongly developed in-situ fabric in the fault zone does not contribute to its frictional weakness, but does lead to a near-cohesionless fault zone, which may facilitate rupture propagation by reducing shear strength and surface energy at the tip of the rupture front. We suggest that the shallow rupture and large coseismic slip during the 2011 Tohoku earthquake was facilitated by a weak and cohesionless fault combined with strong wall rocks that drive localized deformation within a narrow zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three sites were drilled in the Izu-Bonin forearc basin during Ocean Drilling Program (ODP) Leg 126. High-quality formation microscanner (FMS) data from two of the sites provide images of part of a thick, volcaniclastic, middle to upper Oligocene, basin-plain turbidite succession. The FMS images were used to construct bed-by-bed sedimentary sections for the depth intervals 2232-2441 m below rig floor (mbrf) in Hole 792E, and 4023-4330 mbrf in Hole 793B. Beds vary in thickness from those that are near or below the resolution of the FMS tool (2.5 cm) to those that are 10-15 m thick. The bed thicknesses are distributed according to a power law with an exponent of about 1.0. There are no obvious upward thickening or thinning sequences in the bed-by-bed sections. Spaced packets of thick and very thick beds may be a response to (1) low stands of global sea level, particularly at 30 Ma, (2) periods of increased tectonic uplift, or (3) periods of more intense volcanism. Graded sandstones, most pebbly sandstones, and graded to graded-stratified conglomerates were deposited by turbidity currents. The very thick, mainly structureless beds of sandstone, pebbly sandstone, and pebble conglomerate are interpreted as sandy debris-flow deposits. Many of the sediment gravity flows may have been triggered by earthquakes. Long recurrence intervals of 0.3-1 m.y. for the very thickest beds are consistent with triggering by large-magnitude earthquakes (M = 9) with epicenters approximately 10-50 km away from large, unstable accumulations of volcaniclastic sand and ash on the flanks of arc volcanoes. Paleocurrents were obtained from the grain fabric of six thicker sandstone beds, and ripple migration directions in about 40 thinner beds; orientations were constrained by the FMS images. The data from ripples are very scattered and cannot be used to specify source positions. They do, however, indicate that the paleoenvironment was a basin plain where weaker currents were free to follow a broad range of flow paths. The data from sandstone fabric are more reliable and indicate that turbidity currents flowed toward 150? during the time period from 28.9 to 27.3 Ma. This direction is essentially along the axis of the forearc basin, from north to south, with a small component of flow away from the western margin of the basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microfabric of 11 mudrock specimens from ODP Site 808 (Nankai accretionary prism) was quantitatively analyzed using X-ray texture goniometry and optical petrography. The objectives of the study were to learn about rock strain and to detect a component of bulk lateral shortening in the deformation of the mudstones. Strain evaluation is based on the predictions of March theory, and on distortions of initially homogeneous marker particle distributions (the Fry technique). The main results are as follows. The specimens underwent a strain path of progressive flattening, which is closely related to loss of pore space by vertical loading. A component of bulk lateral shortening is detectable in the top 550 mbsf at Site 808, but compared with the amount of uniaxial vertical shortening, its relative magnitude is probably small. Moreover, it cannot be said with confidence whether this is caused by toe contraction of the accretionary wedge or by gravitationally induced downslope movement of the sediment pile. The mudstones examined were deposited in a marine environment with an oxic bottom water column. Micropore collapse is an important fabric building mechanism, but below 400 mbsf its effects are at least partly overridden by recrystallization of smectite. We conclude that mud microfabrics are not very precise deformation gauges, but can be used for rough estimations of strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the azimuth of bottom-current flow in drift deposit sediments recovered at ODP Sites 1095 and 1101, Antarctic Peninsula, using paleomagnetic reorientation of anisotropy of magnetic susceptibility (AMS) ellipsoids. A total of 38 cores from the two ODP sites have been measured, providing spatial and directional information on the physical record of the ACC (Antarctic Circumpolar Current) in the Plio-Pleistocene. Declination and inclination of the paleomagnetic vector of each core segment were used to reorient the AMS principal axes to the geographic coordinates. The cores were reoriented using the measured direction of the characteristic remanent magnetization (ChRM) with respect to a common reference line for the core, from which we are able to determine the orientation of the paleocurrent flow for Sites 1095 (Drift 7) and 1101 (Drift 4) relative to the geographic coordinates. Both sites have paleocurrent directions trending ~NW-SE, which in the former locality are parallel to a sediment wave field. Our study shows that a combination of magnetic fabric analysis and paleomagnetism allows deep-sea sedimentary fabric to be used as a long-term proxy of bottom-current flow history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How the micro-scale fabric of clay-rich mudstone evolves during consolidation in early burial is critical to how they are interpreted in the deeper portions of sedimentary basins. Core samples from the Integrated Ocean Drilling Program Expedition 308, Ursa Basin, Gulf of Mexico, covering seafloor to 600 meters below sea floor (mbsf) are ideal for studying the micro-scale fabric of mudstones. Mudstones of consistent composition and grain size decrease in porosity from 80% at the seafloor to 37% at 600 mbsf. Argon-ion milling produces flat surfaces to image this pore evolution over a vertical effective stress range of 0.25 (71 mbsf) to 4.05 MPa (597 mbsf). With increasing burial, pores become elongated, mean pore size decreases, and there is preferential loss of the largest pores. There is a small increase in clay mineral preferred orientation as recorded by high resolution X-ray goniometry with burial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of minor moraine ridges are observed on the till surface in the proglacial area of Yala Glacier, Nepal Himalaya. The till surface, which is often fluted, consists ofsix different till sheets. It lies present glacial margin and the bulky terminal moraine ridges. These till sheets correspond to six re-advance stages during the general retreat which followed Little Ice Age ad- vance which formed the bulky terminal moraine ridges. Field observations and till fabric analysis suggest that the minor moraine ridges of Yala Glacier seem to be formed annually, by ice push. On the assumption that their annual character was maintained for a long time, and that the time span needed for each re-advance was proportional to the height of terminal moraine of each till sheet, the dating of Little fee Age moraines was attempted. The results indicate that Little Ice Age advances occurred in 1815 and in 1843, roughly simultanously with those in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fabric analyses from two North Atlantic drift deposits provide proxies for determining relative variations in the strength of abyssal flow over the last 10 my. The data show a cessation of current-controlled sedimentation at the shallower Feni Drift (2417 m) at the time of onset of Northern Hemisphere glaciation (2.6 Ma). Drift formation ended nearly 2 my earlier (4.2 Ma) at the deeper Gardar Drift (3220 m), implying stepwise reduction in deep-water flow. Relatively light delta18O values at the deeper Gardar Drift indicate a warmer, thus also more salty, water mass site prior to 6 Ma. We interpret this as representing Mediterranean Sea water, which flowed north at depths greater than that of the Feni Drift Site. The supply of Mediterranean Water to the North Atlantic was shut off as the Gibraltar Straits closed, causing the Messinian salinity crisis, and never returned to that position in the water column after the Mediterranean opened again.