45 resultados para Evidence Accumulation
Resumo:
A six-fold increase in the rate of accumulation of Al in north and central Atlantic and Pacific Ocean sediments indicates vastly increased denudation of the continents during the past 15 Ma. The increase is more apparent in hemipelagic than pelagic sites, demonstrating widely distributed local controls. Similarities in the rate of increase in the Atlantic and Pacific show that tectonic elevation is not responsible for the difference in sedimentation rate. Also, similarities in the difference at sites of low and high latitude suggest that glaciation is not the most significant source. A lack of correspondence between sedimentation rates and Vail's sea-level curve similarly rule out that effect. The conclusion drawn here is that worldwide climatic deterioration during the late Tertiary is the explanation for the striking increase in detrital sedimentation in the World ocean.
Resumo:
In the northwest Arabian Sea upwelling occurs each summer, driven by the strong SW monsoon winds. Upwelling results in high biological productivity and a distinctive assemblage of plankton species in the surface waters off Oman that are preserved in the sediments along the Oman continental margin, creating a geologic record of monsoon-driven upwelling. Sediments recovered from the Oman continental margin during Ocean Drilling Program leg 117 provide an opportunity to examine how upwelling has varied during the late Quaternary, spanning a longer interval than piston cores recovered prior to the ODP cruise. Variations in foraminifer shell accumulation and in the relative abundance of Globigerina bulloides indicate dominant cycles of variation at 1/100 kyr, the dominant frequency of glacial-interglacial variations, and at 1/23 kyr, the frequency of precessionally driven cycles in seasonal insolation. The strongest monsoon winds (indicated by increased upwelling) occurred during interglacial times when perihelion was aligned with the summer solstice, an orbital change that increased the insolation received during summer in the northern hemisphere. During glacial times upwelling was reduced, and although the precessional cycles were still present their amplitude was smaller. At both frequencies the upwelling cycles are in phase with minimum ice volume, evidence that glacial-interglacial climate changes also include changes to the climate system that influence the low-latitude monsoon. We attribute the decrease in the monsoon winds observed during glacial times to changes in bare land albedo over Asia and/or to changes in the areal extent and seasonal cycle in Asian snow cover that decrease the summer land-sea temperature contrast. Other mechanisms may also be involved. These new upwelling time series differ substantially from previous results, however the previous work relied on cores located farther offshore where upwelling is less intense and other physical mechanisms become important. Our results support the observations derived from atmospheric general circulation models of the atmosphere that indicate that both glacial boundary conditions, and the strength of summer insolation are important variables contributing to cycles in the monsoon winds during the late Quaternary.
Resumo:
Low concentrations of organic carbon in slowly accumulating sediments from Sites 597, 600, and 601 reflect a history of low marine productivity in the subtropical South Pacific since late Oligocene times. The distributions of n-alkanes, n-alkanoic acids, and n-alkanols provide evidence of the microbial alteration of sediment organic matter. Landderived hydrocarbons, possibly from eolian transport, dominate n-alkane distributions in these samples.
Resumo:
There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.