33 resultados para Curves of progress of diseases
Resumo:
Site 723 is located in a water depth of 808 m at the center of the oxygen minimum zone and the middle part of the main thermocline on the Oman Margin. Oxygen isotope curves of planktonic delta18OP and benthic delta18OB can be traced back continuously to Stage 23 with high resolution measurements. A tentative correlation to Stage 53 has been tried using oxygen isotope stratigraphy. The amplitudes of the fluctuations of the benthic delta18OB curve are small, compared with the planktonic delta18OP curve. The delays of benthic oxygen isotopes delta18OB related to the planktonic delta18OP appear in the transgressive stages. Carbon isotopes of benthic delta13CB and planktonic delta13CP generally show an inverse correlation with oxygen isotope values delta18OB and delta18OB and delta18OP, however, the changes of delta13C are more gradual than those of delta18O during transgressive stages in spite of the synchronized changes of delta13C with those of delta18O during regressive stages. The difference of oxygen isotope between benthic and planktonic foraminifers represents the degree of pushing up the thermocline by upwelling, and the difference of carbon isotope represents the relative amount of upwelling Sigma[CO2] to the biological uptake in the surface water. These isotopic differences can be used as indicators of upwelling and show strong upwelling in the interglacial and weak upwelling in the glacial stages. The organic carbon content is correlated with the isotopic upwelling indicators, and higher content is correlated with the isotopic upwelling indicators and higher content appears in the interglacial stages. The calculated rate of sedimentation based on oxygen isotope stratigraphy in glacial stages is significantly high, two to four times that of interglacial stages, and the absolute flux of fluvial sediments with variability of lithofacies increased in the glacial stage. The present glacial-interglacial cycle with the fluctuation of upwelling relating to the southwest monsoon can be traced back to Stage 8, 250 ka. From Stage 8 to 12, 250-450 ka, the upwelling indicator of oxygen isotope difference did not show such distinct cyclicity. For Stages 12-15, 450-600 ka, the upwelling can be estimated as strong as in interglacial stage of the present cycles, with slightly weak upwelling in the glacial stage. This upwelling and climate can be traced back to the late Pliocene. The strongest upwelling can be estimated in the Pliocene-Pleistocene time by the isotopic indicators and the high organic carbon content.
Resumo:
High-, i.e. 15-140-yr-resolution climate records from sediment cores 23071, 23074, and PS2644 from the Nordic Seas were used to recon:;truct changes in the surface and deep water circulation during marine isotope stages 1-5.1, i.e. the last 82 000 yr. From this the causal links between the paleoceanographic signals and the Dansgaard-Oeschger events 1-21 revealed in 0180-ice-core records from Greenland were determined. The stratigraphy of the cores is based on the planktic 0180 curves, the minima of which were directly correlated with the GISP2-0180 record, numerous AMS 14C ages, and some ash layers. The planktic d18O and dl3C curves of all three cores reveal numerous meltwater events, the most pronounced of which were assigned to the Heinrich events 1-6. The meltwater events, among other things also accompanied by cold sea surface temperatures and high IRD concentration, correlate with the stadial phases of the Dansgaard-Oeschger cycles and in the western Iceland Sea also to colder periods or abrupt drops in 0180 within a few longer interstadials. Besides being more numerous, the meltwater events also show isotope values lighter in the Iceland Sea than in the central Norwegian Sea, especially if compared to core 23071. This implies a continuous inflow of relative warm Atlantic water into the Norwegian Sea and a cyclonic circulation regime.
Resumo:
Along the N-S-transect of DSDP-Sites 5446, 397, 141, and 366, oxygen and carbon isotopes, flux rates of calcium carbonate, terrigenous matter, and biogenic opal, clay minerals and the size distribution of terrigenous partictes were determined in order to assess the ties between atmospheric and oceanic surface and deep-water circulation off northwest Africa during the late Neogene. During the last 9 m.y., both the paleoceanography in the eastern Atlantic and west African paleodimates were intimately correlated with the evolution of the polar ice sheets as reflected in the benthos d18O curves of the 4 DSDP-Sites. These records make it possible to distinguish six major time intervals which were charaterized by long-term persistent regimes of climatic stability or climatic change. Short-term, "Milankovitch"-type cycles superimpose the long-term climatic evolution and may reflect the chronostratigraphic control fluctuations of the solar insolation persisting back to pre-Pleistocene times. Relatively stable, warm climates prevailed during the late Tortonian/early Messinean, 9 to 6 m.y., and the early Pliocene, 4.5 to 3.5 m.y. ago. Based on d18O curves, the amplitudes of short-term climatic variation were generally low, and the ice sheets were smaller than during peak Holocene time. Oceanic circulation and resulting paleoproductivity in upwelling zones were insignificant. The strength of dust supplying meridional trade winds was low (3 to 5 m/s), interglacial-style zonal winds near the ITCZ were dominant, as indicated by the high abundance of kaolinite. Phases of fluvial sediment supply were common. Humidity was characteristic of the climate in northwest Africa for the major part of this time. Major episodes of climatic deterioration in the subtropics occurred in the latest Miocene/early Pliocene, between some 5.6 and 5.2 and between 4.9 and 4.6 m.y. ago, in the late Pliocene, between 3.2 and 2.4 m.y. ago, and again in the Quaternary, near 1 m.y. ago. The episodes were correlated with marked increases of the global ice volume, as revealed by drastic increases of d18O values. They suggest sea-level falls of up to 70 m below the present sea level in the latest Miocene and earliest Pliocene and of 145 m in the latest Pliocene and Quaternary. The climatic changes resulted in strongly enhanced meridional trade winds as suggested by coarser terrigenous grain-sizes, increased mass accumulation rates of eolian dust, and changes in clay-mineral composition from dominantly kaolinite to illite and chlorite. The meridional trade winds reached speeds of 8 to 10 m/s with a maximum near 15 m/s. The enhanced winds probably led t o intensified coastal upwelling as shown by the contemporaneous local increase i n the deposition of biogenic silica and the local depletion of 13C at Site 397. The most drastic environmental changes near 2.4 and 1 m.y. ago coincide with hiatuses which may indicate phases of general erosion due to strongly enhanced deep-water circulation in the northeast At1antic along the northwest African continental margin. The occasional occurrence of quartz grains coarser than 250 µm may suggest ice-rafted debris in sediments off Morocco. During these time intervals the climate in NW-Africa was dominantly arid. Nevertheless, fluvial runoff (and humidity) continued to be important during intermittent warm phases of the short-term climatic cycles. During the end and the beginning of (inter-) glacial times, fluvial supply of nutrients seems to be the dominant factor, controling phases of enhanced paleoproductivity observed off northwest Africa, whereas during phases of glacial maximum strenger fertility of (increased) coastal upwelling becomes more important. A long-term evolution of paleoenvironments during the last 40 m.y. is depicted in the sediments of Site 366 and is clearly controlled by the plate tectonic route of this Site. During Oligocene times, Site 366 lay in the center of the equatorial upwelling, as shown by the high content of biogenic silica contributing up to 100 % of the carbonate-free sediment fraction >6 µm. The influence of equatorial upwelling abruptly terminated near 15 m.y. ago, a change in the record exaggerated by a hiatus of about 2 m.y. Prior to 25 m.y., the terrigenous input at the paleolatitude of Site 366 was restricted t o eolian sediment supply from South Africa by southeasterly trade winds, as shown by dominantly illite and chlorite in the clay fraction and extremely fine-grained terrigenous matter. Near the Oligocene/Miocene boundary, Site 366 drifted across the equator into the belt of the northeasterly trade winds, which is inferred from the increased content of kaolinite and coarser grain sizes of the terrigenous sediment fraction. The clay-mineral and grain-size compositions of Site 366 do not reflect a noteworthy northward shift of the ITCZ during late Miocene and early Pliocene times, i.e. no marked global circulation asymmetry due to the possible absence of a major Northern Hemisphere glaciation (Flohn 1981). This lack of a more northerly position of the ITCZ may result from a bipolar glaciation already existing during late Miocene times, such as also suggested by the evidence of tillites on Iceland and in southern Alaska during those intervals (e.g., Denton & Amstrong 1969, Mudie & Helgason 1983).