216 resultados para CCD PHOTOMETRY
Resumo:
Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature which is ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into RDOM was shown experimentally, implying that microorganisms produce far more RDOM than needed to sustain the global pool. By assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, we show that most of the newly formed RDOM is molecularly different from deep sea RDOM. Only <0.4% of the net community production was channeled into RDOM molecularly undistinguishable from deep sea DOM. Our study provides novel experimentally derived molecular evidence and data for global models on the production, turnover and accumulation of marine DOM.
Resumo:
The monograph presents results of deep-sea drilling in the Black Sea carried out in 1975. Detailed lithological, biostratigraphic and geochemical studies of Miocene-Holocene sediments have been carried out by specialists from institutes of the USSR Academy of Sciences, Moscow State University and other organizations. Drilling results are compared with geophysical data. Geological history of the Black Sea basin is considered as well.
Resumo:
Correlation of mineral associations from sediment recovered on the northwestern Australian continental margin document the juvenile-to-mature evolution of a segment of the Indian Ocean. Lower Cretaceous sediments contain sandy-to-silty radiolarian claystone that consists of highly smectitic mixed-layered illite/smectite (I/S) in addition to minor amounts of diagenetic pyrite, barite, and rhodochrosite. These immature, poorly sorted sediments were derived from nearby continental margin sources. Discrete bentonite layers and abundant smectite are the alteration products of volcanic material deposited during early basin formation. Abundant quartz-replaced radiolarian tests suggest high surface-water productivity, and calcareous fossils indicate water depths were above the calcite compensation depth (CCD) in the juvenile Indian Ocean. The increase in pelagic carbonate from the mid- to Late Cretaceous signals the transition to mature, open-ocean conditions. Similar to other slowly deposited contemporaneous deep-sea sediments, mid- to Upper Cretaceous sediments of the northwestern margin of Australia contain palygorskite. This palygorskite is associated with calcareous sediment across the ooze-to-chalk transition, detrital mixed-layered I/S, and zeolite minerals in places. This palygorskite occurs above the transformation from opal-A to opal-CT. The underlying opal-CT sediment contains abundant smectite and zeolite minerals. Calcareous sediment dominates the Cenozoic, except at abyssal sites that were not inundated by calcareous turbidites. Paleocene and Eocene sediments contain abundant smectite and zeolite minerals derived from the alteration of volcanic material. Palygorskite was found to be associated with sepiolite and dolomite in Miocene sediments from Site 765 in the Argo Basin. Pliocene and Quaternary sediments contain detrital kaolinite and mixed-layered I/S, abundant opal-A radiolarian tests, and minor amounts of pyrite
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.
Resumo:
Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.
Resumo:
Preliminary results of the biostratigraphic analysis of calcareous nannofossils recovered from Ocean Drilling Program Leg 128, Sites 798 and 799, provide clues to the Quaternary oceanography of the Japan Sea. The distribution of calcareous nannofossils from the Quaternary sediments at Site 798 (903 m water depth) may record the position of an Oceanographic frontal boundary between warm water derived from a branch of the Kuroshio Current as it entered the Japan Sea through the Tsushima Straits to the south, and colder water introduced into the western portion of the Japan Sea derived from the winter chilling of northern Japan Sea surface waters. This Oceanographic front probably oscillated north-south over Site 798 in response to glacial/interglacial cycles, or perhaps to some other climatic event or combination of events unique to the Japan Sea. During the last 1.5 m.y., six major intervals are recognized when the Oceanographic front may have been north of Site 798 separated by five major intervals when the frontal boundary may have been south of the site. These migrations were centered around approximately 0.125, 0.29, 0.56, 0.62, 0.85, 0.91, 0.98, 1.0, 1.11, and 1.5 Ma, which correspond to the boundaries separating nannofossil-rich sediments from barren or nearly barren, low-carbonate intervals. Nannofossil-rich intervals may represent times when the frontal boundary was north of Site 798, and the site was above the CCD. Barren or nearly barren intervals represent times when the frontal boundary may have been south of Site 798 and the CCD was probably higher. The distribution of calcareous nannofossils at Site 799 (2073 m water depth) appears to be controlled more by the depth of the CCD than by any climatic effects. The FOD (first occurrence datum) of Emiliania huxleyi, the LOD (last occurrence datum) of Psuedoemiliania lacunosa, Helicosphaera sellii, Calcidiscus macintyrei (10 ?m), and the FOD and LOD of Reticulofenestra asanoi are recognized from Site 798 cores. The LOD of P. lacunosa is observed in sediments from Site 799. Only in the sediments younger than 1.5 Ma are the nannofossils from Sites 798 and 799 preserved well enough and sufficiently numerous for age dating and paleoceanographic conjecture. In-situ dissolution in older sediments at both sites precludes any dating or paleoenvironmental interpretations.
Resumo:
Geochemical analyses of organic matter were carried out on Quaternary sediments from Sites 582 and 583 (Nankai Trough) and on Pliocene to Miocene sediments from Site 584 (Japan Trench), DSDP Leg 87, to evaluate petroleum-generating potential and to characterize the organic matter. The vitrinite-huminite reflectances of indigenous materials for these sites are less than 0.3% indicating the immature nature of the sediments. The sediments, however, contain remarkable amounts of recycled organic materials. The Quaternary sediments from Sites 582 and 583 contain small amounts of amorphous organic matter (less than 0.75 wt.% organic carbon and 66-90% amorphous debris), which is composed of predominantly recycled, oxidized, and over-matured (or matured) Type III material. The amount of hydrocarbon yield indicates that those sediments have lean-source potential for commercial hydrocarbon generation. The Pliocene to Miocene sediments from Site 584 contain organic matter (0.3-1.09 wt.% organic carbon) of predominantly amorphous debris (68-96%) that originated in two sources, an indigenous Type II material and a recycled, over-matured material. Pyrolysis shows an upward increase in the section of hydrocarbon yield and the same trend is also observed in organic-carbon content. The amount of the yield indicates that the Miocene sediments have lean-to-fair source potential and the Pliocene sediments have fair-to-good source potential.