309 resultados para 7140-210
Resumo:
The mid-Cretaceous is thought to be a greenhouse world with significantly higher atmospheric pCO2 and sea-surface temperatures as well as a much flatter latitudinal thermal gradient compared to the present. This time interval was punctuated by the Cenomanian/Turonian Oceanic Anoxic Event (OAE-2, ~ 93.5 Myr ago), an episode of global, massive organic carbon burial that likely resulted in a large and abrupt pCO2 decline. However, the climatic consequences of this pCO2 drop are yet poorly constrained. We determined the first, high-resolution sea-surface temperature (SST) record across OAE-2 from a deep-marine sedimentary sequence at Ocean Drilling Program (ODP) Site 1276 in the mid-latitudinal Newfoundland Basin, NW Atlantic. By employing the organic palaeothermometer TEX86, we found that SSTs across the OAE-2 interval were extremely high, but were punctuated by a remarkably large cooling (5-11 °C), which is synchronous with the 2.5-5.5 °C cooling in SST records from equatorial Atlantic sites, and the "Plenus Cold Event". Because this global cooling event is concurrent with increased organic carbon burial, it likely acted in response to the associated pCO2 drop. Our findings imply a substantial increase in the latitudinal SST gradient in the proto-North Atlantic during this period of global cooling and reduced atmospheric pCO2, suggesting a strong coupling between pCO2 and latitudinal thermal gradients under greenhouse climate conditions.
Resumo:
Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.
Resumo:
Sand detrital modes of Albian-Eocene clastic gravity-flow deposits cored and recovered at Ocean Drilling Program Site 1276 reflect the postrift geologic evolution of the Newfoundland passive continental margin. Cretaceous sandstone compositions (average: Q57F23L20; Ls%Lsc = 35; total%bioclasts = 3) are consistent with a source on Grand Banks such as Avalon Uplift. Their relatively low potassium feldspar (Qm71K8P21) contents distinguish them from Iberian sandstones and appear to preclude an easterly source during the early history of the ocean basin. Isolated volcaniclastic input near the Paleocene/Eocene boundary (~60 Ma) at Site 1276 is also present in Iberian samples of this age, suggesting that magmatism was widespread across the North Atlantic during this time frame; the source(s) of this volcanic debris remains equivocal. In the Eocene, the development of carbonate bank facies on the shelf marks a profound compositional change to calcareous grainstones (average: Q27F11L62; Ls%Lsc = 82; total%bioclasts = 55) in basinal gravity-flow deposits at Site 1276. This calcareous petrofacies is present on the Iberian margin and in the Pyrenees, suggesting that it was a regional event. The production and downslope redistribution of carbonate debris, including bioclastic and lithic fragments, was likely eustatically controlled. The Newfoundland (Site 1276 and Jeanne d'Arc Basin) sandstones are mainly quartzolithic. Their composition and the contrast in composition between them and more quartzofeldspathic sandstones from the Iberian margin are likely a product of rifting along a Paleozoic suture zone separating distinct basement terranes. This prerift geologic setting contrasts with that of rifts developed within other cratonic settings with variable amounts of synrift volcanism. When synthesized, the spectrum of synrift and postrift sand compositions produces a general model of passive margin (rift-to-drift) sandstone provenance.
Resumo:
We report U-Pb and 39Ar-40Ar measurements on plutonic rocks recovered from the Ocean Drilling Program (ODP) Legs 173 and 210. Drilling revealed continental crust (Sites 1067 and 1069) and exhumed mantle (Sites 1070 and 1068) along the Iberia margin and exhumed mantle (Site 1277) on the conjugate Newfoundland margin. Our data record a complex igneous and thermal history related to the transition from rifting to seafloor spreading. The results show that the rift-to-drift transition is marked by a stuttering start of MORB-type magmatic activity. Subsequent to initial alkaline magmatism, localized mid-oceanic ridge basalts (MORB) magmatism was again replaced by basin-wide alkaline events, caused by a low degree of decompression melting due to tectonic delocalization of deformation. Such "off-axis" magmatism might be a common process in (ultra-) slow oceanic spreading systems, where "magmatic" and "tectonic" spreading varies in both space and time.
Resumo:
We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.