476 resultados para 63-470A
Resumo:
Data on analyses of chemical composition of DSDP samples of bottom sediments and rocks carried out in P.P. Shirshov Institute of Oceanology are reported. Basal sediments and sedimentary rocks prevail in the sample set.
Resumo:
After nearly 30 years of growth in geochronologic knowledge, the originally published age models for many older deep sea marine sections have become badly outdated. In this report we present newly revised age models for Neogene sediments from 94 DSDP holes. Biostratigraphic data for planktonic foraminifers, calcareous nannofossils, diatoms and radiolarians, paleomagnetic and other stratigraphic data were compiled from the original Initial Reports volumes of DSDP. The Berggren et al. (1985 doi:10.1130/0016-7606(1985)96<1407:CG>2.0.CO;2) scale was used for the age of magnetic reversals, and a variety of recent papers were used to establish a standard modern set of calibrations for marine microfossil events to the magnetic reversal scale. New age vs depth plots were made for each hole, and for each a new line of correlation was created. All tabulated stratigraphic data, new age models, and age depth plots are given as appendices to the report.
Resumo:
New age models for twelve Deep Sea Drilling Project sites in the North Pacific have been produced, based on (in order of importance in our dataset) a recompilation of previously published diatom, calcareous nannofossil and foraminifer first and last occurrences, and magnetostratigraphy. The projected ages of radiolarian first and last occurrences derived from the line of correlation of the age/depth plots have been computed from these sites, and 28 radiolarian events have thereby been newly cross calibrated to North Pacific diatom and other stratigraphy. Several of the North Pacific radiolarian events are older than in previously published equatorial Pacific calibrations, and some may be diachronous within the North Pacific. These patterns may be due to complex latitudinal patterns of clinal variation in morphotypes within lineages, or to migration events from the North Pacific towards the Equator.
Resumo:
The natural remanent magnetization (NRM) of ocean basalts, giving rise to the pattern of marine magnetic anomalies, is known to be of comparatively low intensity for about 20 Ma old oceanic crust. The aim of this study is to detect possible peculiarities in the rock magnetic properties of ocean basalts of this age, and to establish a link between magnetomineralogy, rock magnetic parameters, and the low NRM intensity. Ocean basalts covering ages from 0.7 to 135 Ma were selected for rock magnetic experiments and their room temperature hysteresis parameters, Curie temperature and temperature dependence of saturation magnetization MS(T) was determined and complemented by reflected light microscopy. The majority of samples is magnetically dominated by titanomagnetite and titanomaghemite with increasing oxidation state with age. For these, a strong dependence of hysteresis parameters on the age of the samples is found. The samples have a minimum in saturation magnetization and a maximum in magnetic stability in the age interval ranging from approximately 10 to 40 Ma, coinciding with the age interval of low NRM intensity. The observed change in saturation magnetization is in the same order as that for the NRM intensity. A further peculiarity of the titanomaghemites from this age interval is the shape of their MS(T) curves, which display a maximum above room temperature (Neel P-type) and, sometimes, a self-reversal of magnetization below room temperature (Neel N-type). These special rock magnetic properties can be explained by titanomagnetite low-temperature oxidation and highly oxidized titanomaghemites in the age interval 10-40 Ma. A corresponding measurement of the NRM at elevated temperature allows to identify a maximum in NRM intensity above room temperature for the samples in that age interval. This provides evidence that the NRM is equally carried by titanomaghemites and that the low NRM intensities for about 20 Ma old ocean basalts are caused consequently by the low saturation magnetization of these titanomaghemites.
Resumo:
Neogene palynofloras of southern California have been all too infrequently studied. Previous investigations of Pacific Coast sediments have been largely restricted to Pacific Northwest locales. Some important studies include those by Gray (1964), Wolfe, Hopkins, and Leopold (1966), Wolfe and Leopold (1967), Hopkins (1968), Piel (1969, 1977), Ballog, Sparks, and Waloweek (1972), and Musich (1973). The only published study of southern California materials is that of Heusser (1978) on Holocene sediments of the Santa Barbara basin. Most of these studies are concerned with the microflora from a particular formation; thus they have limited stratigraphic value and in most cases involve nonmarine to marginal marine rocks where no planktonic zonation was available. Musich's (1973) study was the first attempt at tying pollen assemblages to a planktonic zonation over an extended stratigraphic interval (Miocene to Pleistocene).Its location in the southern California Borderland and the sedimentary sections sampled make Leg 63 extremely valuable in deciphering the palynologic history of the Pacific Coast Neogene. Site 467 was chosen for our initial detailed study, because the relatively slow sedimentation rate provides an almost complete Neogene sequence of mainly terrigenous sediments and reliable planktonic age control is available.The goals of this study were to: (1) establish a reference section of Neogene palynomorph assemblages; (2) develop biostratigraphic criteria for use in correlation with other localities; (3) correlate the palynologic assemblages with the planktonic zonations; and (4) study the paleoenvironmental history in the southern California Neogene.