446 resultados para Mesozoic-cenozoic tectonics
Resumo:
The differential effects of climate change, sea level, and water mass circulation on deposition/erosion of marine sediments can be constrained from the distribution of unconformities in the world's oceans. I identified temporal and depth patterns of hiatuses ("hiatus events") from a large and chronologically well constrained stratigraphic database of deep-sea sediments. The Paleogene is characterized by few, several million year long hiatuses. The most significant Cenozoic hiatus event spans most of the Paleocene. The Neogene is characterized by short, frequent hiatus events nearly synchronous in shallow and deep water sediments. Epoch boundaries are characterized by peaks in deep water hiatuses possibly caused by an increased circulation of corrosive bottom water and sediment dissolution. The Plio-Pleistocene is characterized by a gradual decrease in the frequency of hiatuses. Future studies will focus on the regional significance of the hiatus events and their possible causes.
Resumo:
Variations in the 18O/16O ratios of marine fossils and microfossils record changes in seawater 18O/16O and temperature and form the basis for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope curves for Phanerozoic foraminifera, mollusks, brachiopods, and conodonts, and for Precambrian limestones, dolostones, and cherts. Periodic oxygen-isotopic variations in deep-sea foraminifera define marine isotope stages that, when combined with biostratigraphy and astronomical tuning, provide a late Cenozoic chronostratigraphy with a resolution of several thousand years. Oxygen isotope events of early Cenozoic, Mesozoic, and Paleozoic age serve as chemostratigraphic markers for regional and global correlation. Precambrian oxygen isotope stratigraphy, however, is hampered by the lack of unaltered authigenic marine sediments.
Resumo:
Eocene sediments drilled at the East Tasman Plateau (ETP) exhibit well-defined cycles, high-resolution magnetic stratigraphy, and environmentally-controlled dinoflagellate and diatom distribution patterns. We derive a cyclostratigraphy from the spectral analysis of high-resolution elemental concentration records (Ca, Fe) for this shallow marine time series spanning the middle to early late Eocene (C16n.2n - C21). Changes in carbonate content, the ratio between Gonyaulacoid and Peridinioid dinocysts, and relative abundance of "oligotrophic" diatoms serve as proxies for a high-resolution climatic and sea-level history with high values representing high sea-level stands and decreased eutrophy of surface waters. Changing ratios between high latitude dinocysts versus cosmopolitan species provide clues on sea surface temperature trends and water mass exchange. Our results show that the relatively shallow-water middle Eocene environments of the ETP are influenced by orbitally-forced climatic cycles superimposed on third order relative sea-level changes. Changes in the dominance of Milankovitch frequency at ~38.6 Ma (late Eocene) is related to an initial deepening-step within the Tasmanian Gateway prior to the major deepening during the middle late Eocene (~35.5 Ma). Decreasing sedimentation rates at 38 Ma and 37.2 Ma reflect winnowing associated with sea-level fall. This episode is followed by renewed transgression. Dinocyst distribution patterns indicate high latitude, probably cool temperate surface water conditions throughout, with the exception of a sudden surge in cosmopolitan species near the base of subchron C18.2r, at ~41 Ma; this event is tentatively correlated to the Middle Eocene Climatic Optimum.
Resumo:
The distribution of Mesozoic calcareous nannofossils are tabulated for Holes 807C and 8O3D drilled on the Ontong Java Plateau in the western equatorial Pacific. Nannofossils were abundant but poorly preserved in Hole 803D and range from early Albian to Maastrichtian in age. A possibly complete and expanded K/T boundary interval yielded few diagnostic taxa because of the dissolution of Tertiary forms. The only nannofossil-bearing sample examined from Hole 803D contained the uppermost Maastrichtian zonal indicator Micula prinsii.
Resumo:
Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga- Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages between 1.5 to 3 Ma. The Lusancay Islands can be excluded as a source for the volcanogenic layers found during Leg 180. Generally, the volcanogenic layers indicate much calc-alkaline rhyolitic volcanism in eastern Papua since 3.8 Ma. Starting at 135 ka, however, peralkaline tephra layers appear. This geochemical change in source characteristics might reflect the onset of a change in geotectonic regime, from crustal subduction to spreading, affecting the D'Entrecasteaux Islands region. Initial 143Nd/144Nd ratios as low as 0.5121 and 0.5127 for two of the tephra layers are interpreted as indicating that D'Entrecasteaux Islands volcanism younger than 2.9 Ma occasionally interacted with the Late Archean basement, possibly reflecting the mobilisation of the deep continental crust during active rift propagation.