444 resultados para LEMNA-GIBBA DUCKWEED


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water depth zonation of fifty nine benthonic foraminiferal species in marine sediment surfaces has been described. Some species are combined to groups which mark particular depth zones: an upper and lower shelf-fauna, an upper and lower slope fauna, and a shelf-slope fauna. Dependence on latitude could be ascertained for Textularia panamensis, and submergence effects for Hyalinea balthica.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Living and dead benthic Foraminifera of 26 sediment surface samples from the East Atlantic continental margin (off Portugal) are studied. The stations are located on two profiles off Cape Mondego and off Cape Sines, ranging in water depth from 45 to 3905 meters. The highest values of standing crop are on the shelf (200 m) (up to 420 specimens/10 cm**3). Below 1000 m water depth standing crop is low (5 -24 specimens/10 cm**3). 151species and species groups are distinguished. Most of the living species do occur in a wide depth range. Faunal depth boundaries are at 50/100m, at 600/800 m, and at 1000 m. Results published from the North Atlantic and the East Mediterranean do not differ from those obtained in samples off Portugal. Depth of water (e.g. hydrostatic pressure) or another factor being controlled by depth (e.g. limitation of food supply) seems to be the most important factor of the benthic foraminiferal distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages and the carbon isotope composition of the epifaunal benthic foraminifera Epistominella exigua and Fontbotia wuellerstorfi have been investigated along core MD02-2589 located at the southern Agulhas Plateau (41°26.03'S, 25°15.30'E, 2660 m water depth). This study aims to evaluate changes in the benthic paleoenvironment and its influence on benthic d13C with a notable focus on E. exigua, a species associated with phytodetritus deposits and poorly studied in isotope paleoceanographic reconstructions. The benthic foraminiferal assemblages (>63 µm) show large fluctuations in species composition suggesting significant changes in the pattern of ocean surface productivity conceivably related to migrations of the Subtropical Convergence (STC) and Subantarctic Front (SAF). Low to moderate seasonality and relatively higher food supply to the seafloor are indicated during glacial marine isotope stages (MIS) 6, 4, and 2 and during MIS 3, probably associated with the northward migration of the SAF and confluence with the more stationary STC above the southern flank of the Agulhas Plateau. The lowest organic carbon supply to the seafloor is indicated from late MIS 5b to MIS 4 as a consequence of increased influence of the Agulhas Front (AF) and/or weakening of the influence of the STC over the region. Episodic delivery of fresh organic matter, similar to modern conditions at the core location, is indicated during MIS 5c-MIS 5e and at Termination I. Comparison of this paleoenvironmental information with the paired d13C records of E. exigua and F. wuellerstorfi suggests that organic carbon offsets d13C of E. exigua from ambient bottom water d13CDIC, while its d13C amplitude, on glacial-interglacial timescales, does not seem affected by changes of organic carbon supply to the seafloor. This suggests that this species calcifies preferentially during the short time span of the year when productivity peaks and phytodetritus is delivered to the seafloor. Therefore E. exigua, while offset from d13CDIC, potentially more faithfully records the amplitude of ambient bottom water d13CDIC changes than F. wuellerstorfi, notably in settings such as the Southern Ocean that experienced substantial changes through time in the organic carbon supply to the seafloor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: