506 resultados para Agulhas


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sortable silt mean grain sizes together with oxygen and carbon isotopic data produced on the benthic foraminiferal species Fontbotia wuellerstorfi are used to construct high-resolution records of near-bottom flow vigour and deep water ventilation at a core site MD02-2589 located at 2660 m water depth on the southern Agulhas Plateau. The results suggest that during glacial periods (marine oxygen isotope stages 2 and 6, MIS 2 and MIS 6, respectively), there was a persistent contribution of a well-ventilated water mass within the Atlantic to Indian oceanic gateway with a d13C signature similar to present-day Northern Component Water (NCW), e.g., North Atlantic Deep Water (NADW). The records of chemical ventilation and near-bottom flow vigor reflect changes in the advection of northern source waters and meridional variability in the location of the Antarctic Circumpolar Current and its associated fronts. We suggest that during Termination II (TII), changes in chemical ventilation are largely decoupled from near-bottom physical flow speeds. A mid-TII climate optimum is associated with a low-flow speed plateau concurrent with a period of increased ventilation shown in the benthic d13C of other Southern Ocean records but not in our benthic d13C of MD02-2589. The climate optimum is followed by a period of southern cooling around 128 ka coincident with a stronger influence of NCW to interglacial levels at around 124 ka. All proxy records show a near synchronous and rapid shift during the transition from MIS 5a-4 (73 ka). This large event is attributed to a rapid decrease in NADW influence and replacement over the Agulhas Plateau by southern source waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic d13C values (F. wuellerstorfi), kaolinite/chlorite ratios and sortable silt median grain sizes in sediments of a core from the abyssal Agulhas Basin record the varying impact of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) during the last 200 ka. The data indicate that NADW influence decreased during glacials and increased during interglacials, in concert with the global climatic changes of the late Quaternary. In contrast, AABW displays a much more complex behaviour. Two independent modes of deep-water formation contributed to the AABW production in the Weddell Sea: 1) brine rejection during sea ice formation in polynyas and in the sea ice zone (Polynya Mode) and 2) super-cooling of Ice Shelf Water (ISW) beneath the Antarctic ice shelves (Ice Shelf Mode). Varying contributions of the two modes lead to a high millennial-scale variability of AABW production and export to the Agulhas Basin. Highest rates of AABW production occur during early glacials when increased sea ice formation and an active ISW production formed substantial amounts of deep water. Once full glacial conditions were reached and the Antarctic ice sheet grounded on the shelf, ISW production shut down and only brine rejection generated moderate amounts of deep water. AABW production rates dropped to an absolute minimum during Terminations I and II and the Marine Isotope Transition (MIS) 4/3 transition. Reduced sea ice formation concurrent with an enhanced fresh water influx from melting ice lowered the density of the surface water in the Weddell Sea, thus further reducing deep water formation via brine rejection, while the ISW formation was not yet operating again. During interglacials and the moderate interglacial MIS 3 both brine formation and ISW production were operating, contributing various amounts to AABW formation in the Weddell Sea.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: