424 resultados para sedimentary sulfides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multidisciplinary oceanographic survey of the White Sea was carried out in the Gorlo Straight, Basin, and Kandalaksha Bay regions including estuaries of Niva, Kolvitza and Knyazhaya rivers. Hydrophysical study in the northern part of the Basin revealed long-lived step-like structures and inversions in vertical profiles of temperature and salinity, which formed due to tidal mixing of saline and cold Barents Sea waters and warmer White Sea waters in the Gorlo Straight. Biological studies revealed the main features of spatial distribution, as well as qualitative and quantitative composition of phyto- and zooplankton in all studied areas; tolerance of main zooplankton species to fresh water influence in estuaries was shown. Study of suspended matter in estuaries clearly demonstrated physicochemical transformations of material supplied by the rivers. Data on vertical particle flux in the deep part of the Kandalaksha Bay showed difference between the upper and near-bottom layers, which could result from sinking of spring phytoplankton bloom products and supply of terrigenic suspended matter from the nepheloid layer formed by tidal currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution proxy data analyzed on two high-sedimentation shallow water sedimentary sequences (PO287-26B and PO287-28B) recovered off Lisbon (Portugal) provide the means for comparison to long-term instrumental time series of marine and atmospheric parameters (sea surface temperature (SST), precipitation, total river flow, and upwelling intensity computed from sea level pressure) and the possibility to do the necessary calibration for the quantification of past climate conditions. XRF Fe is used as proxy for river flow, and the upwelling-related diatom genus Chaetoceros is our upwelling proxy. SST is estimated from the coccolithophore-synthesized alkenones and Uk'37 index. Comparison of the Fe record to the instrumental data reveals its similarity to a mean average run of the instrumentally measured winter (JFMA) river flow on both sites. The upwelling diatom record concurs with the upwelling indices at both sites; however, high opal dissolution, below 20-25 cm, prevents its use for quantitative reconstructions. Alkenone-derived SST at site 28B does not show interannual variation; it has a mean value around 16°C and compares quite well with the instrumental winter/spring temperature. At site 26B the mean SST is the same, but a high degree of interannual variability (up to 4°C) appears to be determined by summer upwelling conditions. Stepwise regression analyses of the instrumental and proxy data sets provided regressions that explain from 65 to 94% of the variability contained in the original data, and reflect spring and summer river flow, as well as summer and winter upwelling indices, substantiating the relevance of seasons to the interpretation of the different proxy signals. The lack of analogs and the small data set available do not allow quantitative reconstructions at this time, but this might be a powerful tool for reconstructing past North Atlantic Oscillation conditions, should we be able to find continuous high-resolution records and overcome the analog problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sedimentary succession drilled at Sites 840 and 841 on the Tonga forearc allows the sedimentary evolution of the active margin to be reconstructed since shortly after the initiation of subduction during the mid Eocene. Sedimentation has been dominated by submarine fan deposits, principally volcaniclastic turbidites and mass-flows derived from the volcanic arc. Volcaniclastic sedimentation occurred against a background of pelagic nannofossil sedimentation. A number of upward-fining cycles are recognized and are correlated to regional tectonic events, such as the rifting of the Lau Basin at 5.6 Ma. Episodes of sedimentation dating from 16.0 and 10.0 Ma also correlate well with major falls in eustatic sea level and may be at least partially caused by the resulting enhanced erosion of the arc edifice. The early stages of rifting of the Lau Basin are marked by the formation of a brief hiatus at Site 840 (Horizon A), probably a result of the uplift of the Tonga Platform. Controversy exists as to the degree and timing of the uplift of Site 840 before Lau Basin rifting, with estimates ranging from 2500 to 300 m. Structural information favors a lower value. Breakup of the Tonga Arc during rifting resulted in deposition of dacite-dominated, volcaniclastic mass flows, probably reflecting a maximum in arc volcanism at this time. A pelagic interval at Site 840 suggests that no volcanic arc was present adjacent to the Tonga Platform from 5.0 to 3.0 Ma. This represents the time between separation of the Lau Ridge from the Tonga Platform and the start of activity on the Tofua Arc at 3.0 Ma. The sedimentary successions at both sites provide a record of the arc volcanism despite the reworked nature of the deposits. Probe analyses of volcanic glass grains from Site 840 indicate a consistent low-K tholeiite chemistry from 7.0 Ma to the present, possibly reflecting sediment sourcing from a single volcanic center over long periods of time. Trace and rare-earth-element (REE) analyses of basaltic glass grains indicate that thinning of the arc lithosphere had begun by 7.0 Ma and was the principle cause of a progressive depletion of the high-field-strength (HFSE), REE, and large-ion-lithophile (LILE) elements within the arc magmas before rifting. Magmatic underplating of the Tofua Arc has reversed this trend since that time. Increasing fluid flux from the subducting slab since basin rifting has caused a progressive enrichment in LILEs. Subduction erosion of the underside of the forearc lithosphere has caused continuous subsidence and tilting toward the trench since 37.0 Ma. Enhanced subsidence occurred during rifting of the South Fiji and Lau basins. Collision of the Louisville Ridge with the trench has caused no change in the nature of the sedimentation, but it may have been responsible for up to 300 m of uplift at Site 840.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of stable isotope (d13C TOC and d15N TN) and elemental parameters (TOC, TN contents and TOC/TN ratios) of bulk organic matter (<200 µm) from sediment cores recovered from the Patagonian lake Laguna Potrok Aike (Argentina) in the framework of the ICDP deep drilling project PASADO provided insights into past changes in lake primary productivity and environmental conditions in South Patagonia throughout the last Glacial-Interglacial transition. Stratigraphically constrained cluster analyses of all proxy parameters suggest four main phases. From ca 26,100 to 17,300 cal. years BP, lacustrine phytoplankton was presumably the predominant organic matter source in an aquatic environment with low primary productivity rates. At around 17,300 cal. years BP, abrupt and distinct shifts of isotopic and elemental values indicate that the lacustrine system underwent a rapid reorganization. Lake primary productivity (phytoplankton and aquatic macrophytes) shows higher levels albeit with large variations during most of the deglaciation until 13,000 cal. years BP. The main causes for this development can be seen in improved growing conditions for primary producers because of deglacial warming in combination with expedient availability of nutrients and likely calm wind conditions. After 13,000 cal. years BP, decreased d13C TOC values, TOC, TN contents and TOC/TN ratios indicate that the lake approached a new state with reduced primary productivity probably induced by unfavourable growing conditions for primary producers like strengthened winds and reduced nutrient availability. The steady increase in d15N TN values presumably suggests limitation of nitrate supply for growth of primary producers resulting from a nutrient shortage after the preceding phase with high productivity. Nitrate limitation and consequent decreased lacustrine primary productivity continued into the early Holocene (10,970-8400 cal. years BP) as reflected by isotopic and elemental values.