724 resultados para optical emission spectrometry
Resumo:
The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in an mean state with a reduced zonal sea surface temperature gradient, or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.
Resumo:
In northeastern Siberia, Russia, a 1.2 m sediment core was retrieved and radiocarbon dated from a small and shallow lake located at the western side of the lower Lena River (N 69°24', E 123°50', 81 m a.s.l.). The objective of this paper is to reconstruct the palaeoenvironmental variability and to infer major palaeoclimate trends that have occurred since ~ 13.3 cal. kyrs BP. We analysed the diatom assemblages, sedimentology (grain size, total organic carbon (TOC), total nitrogen (TN)), and the elemental and mineralogical composition using X-ray fluorescence (XRF) and X-ray diffractometry (XRD) of the sediment core. Our results show parallel changes in the diatom species composition and sediment characteristics. Enhanced minerogenic sediment input and the occurrence of pyrite is indicative of a cold period between ~ 12.7-11.6 cal. kyrs BP. The diatom data enable a qualitative inference about the local ecological conditions to be made, and reveal an oligotrophic lake system with alkaline and cold conditions during the earliest Holocene. Moderately warmer climates are inferred for the period from ~ 9.1 to 5.7 cal. kyrs BP. The major shift in the diatom assemblage, from dominance of small benthic fragilarioid taxa to a more complex diatom flora with an influx of several achnanthoid and naviculoid diatom species, occurred after a transitional period of about 1400 years (7.1 to 5.7 cal. kyrs BP) at ~ 5.7 cal. kyrs BP, indicating a circumneutral and warmer hydrological regime during the Holocene thermal maximum (HTM). Diatom valve concentrations declined starting ~ 2.8 cal. kyrs BP, but have been rising again since less than or equalt to 600 cal. years BP. This has occurred in parallel to the increased presence of acidophilous diatom taxa (e.g. Eunotia spp.) and decreased presence of small benthic fragilarioid species in the most recent sediments, which is interpreted as the result of neoglacial cooling and subsequent recent climate warming. Our findings are compared to other lake-inferred climate reconstructions along the Lena River. We conclude that the timing and spatial variability of the HTM in the lower Lena River area reveal a temporal delay from north to south.
Resumo:
Increased atmospheric CO2 concentrations are causing greater dissolution of CO2 into seawater, and are ultimately responsible for today's ongoing ocean acidification. We manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepods, Amphiascoides atopus and Schizopera knabeni were both more sensitive to increased acidity when generated by CO2. The present study indicates that copepods living in environments more prone to hypercapnia, such as mudflats where S. knabeni lives, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion in A. atopus. This interaction could be due to a competition for H+ and metals for binding sites.
Resumo:
Mg/Ca and d18O data for four species of planktic foraminifera (G. ruber (white), G. sacculifer (without sac), N. dutertrei, and P. obliquiloculata) from core top sediments from the tropical Pacific, Atlantic, and western Indian Ocean. Deepwater calcite saturation values (Delta[CO3**2-]) at the sites range from 55 to -23 µmol/kg.
Resumo:
Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.
Resumo:
Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.
Resumo:
A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ?90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS**- production.
Resumo:
Organic carbon-rich shales deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 were drilled during ODP Leg 207 at Demerara Rise. We present integrated high-resolution geochemical records of core intervals from ODP Sites 1259 and 1261 both from nannofossil biozone CC14. Our results reveal systematic variations in marine and detrital sediment contribution, depositional processes, and bottom water redox conditions during black shale formation at two locations on Demerara Rise in different paleo-water depths. A combination of redox proxies (Fe/S, P/Al, C/P, redox-sensitive/sulfide-forming trace metals Mn, Cd, Mo, Ni, V, Zn) and other analytical approaches (bulk sediment composition, P speciation, electron microscopy, X-ray diffraction) evidence anoxic to sulfidic bottom water and sediment conditions throughout the deposition of black shale. These extreme redox conditions persisted and were periodically punctuated by short-termed periods with less reducing bottom waters irrespective of paleo-water depth. Sediment supply at both sites was generally dominated by marine material (carbonate, organic matter, opal) although relationships of detrital proxies as well as glauconitic horizons support some influence of turbidites, winnowing bottom currents and/or variable detritus sources, along with less reducing bottom water at the proposed shallower location (ODP Site 1259). At Site 1261, located at greater paleo-depth, redox fluctuations were more regular, and steady hemipelagic sedimentation sustained the development of mostly undisturbed lamination in the sedimentary record. Strong similarities of the studied deposits exist with the stratigraphic older Cenomanian-Turonian OAE2 black shale sections at Demerara Rise, suggesting that the primary mechanisms controlling continental supply and ocean redox state were time-invariant and kept the western equatorial Atlantic margin widely anoxic over millions of years.
Resumo:
Sixteen elemental abundances and 87Sr/86Sr ratio of the Nauru Basin basalt (Cores 75 to 90: sub-bottom depths 950 m to 1050 m) from Hole 462A have been determined by inductively coupled plasma-optical emission spectroscopy and mass spectrometry. The result indicates that the basalt is a new type of oceanic tholeiite, elementally similar to normal mid-oceanic ridge basalts and isotopically similar to oceanic island-type basalts.
Resumo:
A total of 191 samples was collected for inorganic geochemical analyses from DSDP Holes 463, 464, 465, 465A, and 466. These samples were collected with two main goals. First, at least one sample was collected from each core, whenever possible, to document the general geochemical variability within lithologic units. Unfortunately, several lithologic units were inadequately sampled because of poor recovery, mostly due to the presence of chert. The least-sampled units are Units III in Hole 464 and Units IB and II in Hole 466. The second goal was to look for geochemical differences between contrasting lithologies within main lithologic units, particularly between cyclic interbeds of red and green limestone in Lithologic Unit II, Hole 463, and between olive, laminated limestone and gray, massive limestone in Lithologic Unit II, Hole 465A.
Resumo:
Deep sea manganese nodules from the Southern Ocean have been studied using chemical analysis, X-ray diffraction, optical mineragraphic and electron probe microanalysis techniques. The nodules were lower in manganese, iron and associated elements than the average grade of manganese nodules from other localities. A number of chemical relationships have been observed. Nickel, copper, cobalt, barium, zinc, molybdenum, strontium, sulphur and phosphorus are associated with the manganese rich phases and titanium with the iron rich phases. X-ray diffraction analysis and electron probe microanalysis results indicate that the manganese phases are similar to the disordered delta-MnO2 and "manganite" phases reported by other workers.