455 resultados para Kalksinter, Aquädukt, stabile Isotope, Römisch
Resumo:
Constraining the history of seawater (234U/238U) is important because this ratio is used to assess the validity of U/Th ages, and because it provides information about the past rate of physical weathering on the continents. This study makes use of U-rich slope sediments from the Bahamas in an attempt to reconstruct seawater (234U/238U) for the last 800 kyr. For the last 360 kyr, U/Th dating of these sediments provides ages and initial (234U/238U) values. Sixty-seven samples, largely from marine highstands, have initial (234U/238U) which scatter somewhat about the modern seawater value (~1.145) but neither this scatter nor the average value increases with age of sample. These data contrast with published coral data and suggest that seawater (234U/238U) has remained within 15? of the modern value for the last 360 kyr. This confirms the rejection of coral U/Th ages where the initial (234U/238U) is significantly different from modern seawater. Data from older highstands, dated with delta18O stratigraphy or by the presence of the Brunhes/Matuyama (B/M) reversal at 780 kyr, allow seawater (234U/238U) to be assessed prior to the range of the 230Th chronometer. Unfortunately, diagenetic scatter in the data between the B/M reversal and 360 kyr is rather large, probably relating to low U concentrations for these samples. But there is no indication of a trend in seawater (234U/238U) with age. High U samples from close to the B/M reversal show less diagenetic scatter and an initial (234U/238U) that averages 1.102. This lower value can be explained by lower seawater (234U/238U) at the time of the B/M reversal, or by progressive loss of 234U from the sediment by alpha-recoil. A simple box model is presented to illustrate the response of seawater (234U/238U) to variations in riverine input, such as might be caused by changes in continental weathering. Comparison of the Bahamas (234U/238U) data with model results indicates that riverine (234U/238U) has not varied by more than 65? for any 100 kyr period during the last 360 kyr. It also indicates that the ratio of physical to chemical weathering on the continents has not been higher than at present for any extended period during the last 800 kyr.
Resumo:
We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.
Resumo:
Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.
Resumo:
Characterization of sediment from Ocean Drilling Program Site 745, representing the East Kerguelen Ridge sediment drift, addresses important issues surrounding the timing of Miocene to present East Antarctic ice sheet stability and oceanic environmental change. Our results show three periods of greatly enhanced accumulation of Antarctic-derived sediment, at 6.4-5.9 Ma, 4.9-4.4 Ma and 1.1-0.8 Ma, potentially indicative of warmer, less stable ice sheets at these times. Conversely, the accumulation of Antarctic-derived material is comparatively less during the middle of the Pliocene warm epoch (4.8-3.2 Ma). The deep flow forming the Kerguelen drift was stronger during the latest Miocene and earliest Pliocene and has decreased in intensity continuously since then.
Resumo:
Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the d18O value of the smectite (27.2 ± 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with >=90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the d18O value of this clay mineral (27.1 ± 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.
Resumo:
Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb (206Pb/204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd/144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.
Resumo:
Here we use compound-specific hydrogen isotope data of aquatic and terrestrial lipid biomarkers from precisely dated annually laminated sediments from Lake Meerfelder Maar (MFM) in Western Germany to reconstruct decadal resolved hydroclimatic changes during the Younger Dryas. We show that cooling at MFM begun synchronous to the onset of cooling in Greenland at 12.850 years BP. Major environmental changes at MFM however took place 170 years later as a result of substantially drier conditions.
Resumo:
Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.
Resumo:
The aim of this study was to evaluate the potential of constructing an oxygen and carbon isotope stratigraphy for the late Pleistocene succession from Hole 1127B drilled on the Great Australian Bight. Stable isotope analyses were performed on bulk- and fine-fraction (<38 µm) sediment samples. The oxygen isotope variations are generally smaller in magnitude than expected from global pelagic records. This is most likely due to the neriticly dominated sediment composition. Correlation of the oxygen isotope data with carbonate mineralogy and downhole logging data shows simultaneous variations and trends, which are particularly evident in the mid-Pleistocene sediments. Correlation of the oxygen isotope data with the classic SPECMAP curve is used to evaluate the stratigraphic potential of the Site 1127 sediments. This study indicates that an isotope stratigraphy based on planktonic and benthic foraminifers is needed to fully evaluate the response of cool-water carbonates deposited in a margin setting to global ice-volume fluctuations and, hence, the associated sea level variations.
Resumo:
Salinity increase in the subtropical gyre system may have pre-conditioned the North Atlantic Ocean for a rapid return to stronger overturning circulation and high-latitude warming following meltwater events during the Last Glacial period. Here we investigate the Gulf Stream - subtropical gyre system properties over Dansgaard-Oeschger (DO) cycles 14 to 12, including Heinrich ice-rafting event 5. During the Holocene and Last Glacial Maximum a positive gradient in surface dwelling planktonic foraminifera d18O (Globigerinoides ruber) can be observed between the Gulf Stream and subtropical gyre, due to decreasing temperature, increasing salinity, and a change from summer to year-round occurrence of G. ruber. We assess whether this gradient was a common feature during stadial-interstadial climate oscillations of Marine Isotope Stage 3, by comparing existing G. ruber d18O from ODP Site 1060 (subtropical gyre location) and new data from ODP Site 1056 (Gulf Stream location) between 54 and 46 ka. Our results suggest that this gradient was largely absent during the period studied. During the major warm DO interstadials 14 and 12 we infer a more zonal and wider Gulf Stream, influencing both ODP Sites 1056 and 1060. A Gulf Stream presence during these major interstadials is also suggested by the large vertical d18O gradient between shallow dwelling planktonic foraminifera species, especially G. ruber, and the deep dwelling species Globorotalia inflata at site 1056, which we associate with strong summer stratification and Gulf Stream presence. A major reduction in this vertical d18O gradient from 51 ka until the end of Heinrich event 5 at 48.5 ka suggests site 1056 was situated within the subtropical gyre in this mainly cold period, from which we infer a migration of the Gulf Stream to a position nearer to the continental shelf, indicative of a narrower Gulf Stream with possibly reduced transport.
Resumo:
A composite late Maastrichtian (65.5 to 68.5 Ma) marine osmium (Os) isotope record, based on samples from the Southern Ocean (ODP Site 690), the Tropical Pacific Ocean (DSDP Site 577), the South Atlantic (DSDP Site 525) and the paleo-Tethys Ocean demonstrates that subaerially exposed pelagic carbonates can record seawater Os isotope variations with a fidelity comparable to sediments recovered from the seafloor. New results provide robust evidence of a 20% decline in seawater 187Os/188Os over a period of about 200 kyr early in magnetochron C29r well below the Cretaceous-Paleogene Boundary (KPB), confirming previously reported low-resolution data from the South Atlantic Ocean. New results also confirm a second more rapid decline in 187Os/188Os associated with the KPB that is accompanied by a significant increase in Os concentrations. Complementary platinum (Pt) and iridium (Ir) concentration data indicate that the length scale of diagenetic remobilization of platinum group elements from the KPB is less than 1 m and does not obscure the pre-KPB decline in 187Os/188Os. Increases in bulk sediment Ir concentrations and decreases in bulk carbonate content that coincide with the Os isotope shift suggest that carbonate burial flux may have been lower during the initial decline in 187Os/188Os. We speculate that diminished carbonate burial rate may have been the result of ocean acidification caused by Deccan volcanism.