401 resultados para 34-320A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticyclonic mesoscale eddies (ACME) have been proposed as a mechanism by which new nutrients are episodically delivered into the euphotic zone, thereby enhancing new production as well as shifting phytoplankton community structure. In this paper, we report on a 34-month sediment trap experiment at the Cape Verde Ocean Observatory (CVOO; ca. 18°N, 24°E; December 2009-October 2012), occasionally influenced by ACME passages. The typically oligotrophic, weakly seasonal particle flux pattern at the CVOO is strongly modified by the appearance of a highly productive and low oxygen ACME. Out of four recorded diatom flux maxima at CVOO, three were associated with the passage of ACMEs. The recorded diatom maxima events support the view that local ACME dynamics promotes upward nutrient supply into the euphotic zone leading to a rapid response of diatoms. This response is clearly reflected by the flux seasonality: between 40% and 60% of the total annual diatom flux at the CVOO site was intercepted in a relatively short time interval (<60 days). A highly diverse diatom community characterized the diatom fluxes throughout. Along with the ACME passages, small species of the genus Nitzschia, and Thalassionema nitzschioides var. parva dominated and delivered a major portion of the opal and organic carbon into deeper waters at site CVOO. Several pelagic, warm-water background species became dominant during intervals with low nutrient availability in the euphotic zone. Results of our interannual time-series suggest that ACMEs impact on total diatom production and the species-specific composition of the assemblage north of the Cave Verde Islands, and can strengthen the biological pump in open-ocean, oligotrophic subtropical regions of the world ocean. Our observations are useful for testing biogeochemical ocean models and will also help in improving the knowledge of processes and mechanisms behind interannual time-series of bulk components and microorganisms in pelagic and hemipelagic ocean areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on analyses of taxonomic composition of planktonic foraminifera and oxygen isotopic composition of their shells in the sediment core V34-90 from the eastern slope of the USSR Academy of Sciences Rise in the southeast Sea of Okhotsk the main climatic and hydrological variations over the past 20 Ka have been traced and dated by the radiocarbon method. The followed periods have been revealed: glacial (20-12.5 Ka), deglaciation (12.5-8.0 Ka) with a pronounced cooling event (Late Drias about 10.8 Ka) and post deglaciation (last 8.0 Ka).