509 resultados para marine species


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula). Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase), presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although copepods have been considered tolerant against the direct influence of the ocean acidification (OA) projected for the end of the century, some recent studies have challenged this view. Here, we have examined the direct impact of short-term exposure to a pCO2/pH level relevant for the year 2100 (pHNBS, control: 8.18, low pH: 7.78), on the physiological performance of two representative marine copepods: the calanoid Acartia grani and the cyclopoid Oithona davisae. Adults of both species, from laboratory cultures, were preconditioned for four consecutive days in algal suspensions (Akashiwo sanguinea) prepared with filtered sea water pre-adjusted to the targeted pH values via CO2 bubbling. We measured the feeding and respiratory activity and reproductive output of those pre-conditioned females. The largely unaffected fatty acid composition of the prey offered between OA treatments and controls supports the absence in the study of indirect OA effects (i.e. changes of food nutritional quality). Our results show no direct effect of acidification on the vital rates examined in either copepod species. Our findings are compared with results from previous short- and long-term manipulative experiments on other copepod species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising levels of atmospheric CO2 are responsible for a change in the carbonate chemistry of seawater with associated pH drops (acidification) projected to reach 0.4 units from 1950 to 2100. We investigated possible indirect effects of seawater acidification on the feeding, fecundity, and hatching success of the calanoid copepod Acartia grani, mediated by potential CO2-induced changes in the nutritional characteristics of their prey. We used as prey the autotrophic dinoflagellate Heterocapsa sp., cultured at three distinct pH levels (control: 8.17, medium: 7.96, and low: 7.75) by bubbling pure CO2 via a computer automated system. Acartia grani adults collected from a laboratory culture were acclimatized for 3 d at food suspensions of Heterocapsa from each pH treatment (ca. 500 cells/ml; 300 ?g C/l). Feeding and egg production rates of the preconditioned females did not differ significantly among the three Heterocapsa diets. Egg hatching success, monitored once per day for the 72 h, did not reveal significant difference among treatments. These results are in agreement with the lack of difference in the cellular stoichiometry (C : N, C : P, and N : P ratios) and fatty acid concentration and composition encountered between the three tested Heterocapsa treatments. Our findings disagree with those of other studies using distinct types of prey, suggesting that this kind of indirect influence of acidification on copepods may be largely associated with interspecific differences among prey items with regard to their sensitivity to elevated CO2 levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated acidification effects on two crustose coralline algal species common to Pacific coral reefs, Lithophyllum kotschyanum and Hydrolithon samoense. We used genetically homogeneous samples of both species to eliminate misidentification of species. The growth rates and percent calcification of the walls of the epithallial cells (thallus surface cells) of both species decreased with increasing pCO2. However, elevated pCO2 more strongly inhibited the growth of L. kotschyanum versus H. samoense. The trend of decreasing percent calcification of the cell wall did not differ between these species, although intercellular calcification of the epithallial cells in L. kotschyanum was apparently reduced at elevated pCO2, a result that might indicate that there are differences in the solubility or density of the calcite skeletons of these two species. These results can provide knowledge fundamental to future studies of the physiological and genetic mechanisms that underlie the response of crustose coralline algae to environmental stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature has a profound effect on the species composition and physiology of marine phytoplankton, a polyphyletic group of microbes responsible for half of global primary production. Here, we ask whether and how thermal reaction norms in a key calcifying species, the coccolithophore Emiliania huxleyi, change as a result of 2.5 years of experimental evolution to a temperature about 2°C below its upper thermal limit. Replicate experimental populations derived from a single genotype isolated from Norwegian coastal waters were grown at two temperatures for 2.5 years before assessing thermal responses at 6 temperatures ranging from 15 to 26°C, with pCO2 (400/1100/2200 ?atm) as a fully factorial additional factor. The two selection temperatures (15°/26.3°C) led to a marked divergence of thermal reaction norms. Optimal growth temperatures were 0.7°C higher in experimental populations selected at 26.3°C than those selected at 15.0°C. An additional negative effect of high pCO2 on maximal growth rate (8% decrease relative to lowest level) was observed. Finally, the maximum persistence temperature (Tmax) differed by 1-3°C between experimental treatments, as a result of an interaction between pCO2 and the temperature selection. Taken together, we demonstrate that several attributes of thermal reaction norms in phytoplankton may change faster than the predicted progression of ocean warming.