355 resultados para Arizona


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of the 230Th normalization method to estimate sediment burial fluxes in six cores from the eastern equatorial Pacific (EEP) reveals that bulk sediment and organic carbon fluxes display a coherent regional pattern during the Holocene that is consistent with modern oceanographic conditions, in contrast with estimates of bulk mass accumulation rates (MARs) derived from core chronologies. Two nearby sites (less than 10 km apart), which have different MARs, show nearly identical 230Th-normalized bulk fluxes. Focusing factors derived from the 230Th data at the foot of the Carnegie Ridge in the Panama Basin are >2 in the Holocene, implying that lateral sediment addition is significant in this part of the basin. New geochemical data and existing literature provide evidence for a hydrothermal source of sediment in the southern part of the Panama Basin and for downslope transport from the top of the Carnegie Ridge. The compilation of core records suggests that sediment focusing is spatially and temporally variable in the EEP. During oxygen isotope stage 2 (OIS 2, from 13-27 ka BP), focusing appears even higher compared to the Holocene at most sites, similar to earlier findings in the eastern and central equatorial Pacific. The magnitude of the glacial increase in focusing factors, however, is strongly dependent on the accuracy of age models. We offer two possible explanations for the increase in glacial focusing compared to the Holocene. The first one is that the apparent increase in lateral sediment redistribution is partly or even largely an artifact of insufficient age control in the EEP, while the second explanation, which assumes that the observed increase is real, involves enhanced deep sea tidal current flow during periods of low sea level stand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we present a sea surface temperature (SST) record from the western Arabian Sea for the last 20,000 years. We produced centennial-scale d18O and Mg/Ca SST time series of core NIOP929 with focus on the glacial-interglacial transition. The western Arabian Sea is influenced by the seasonal NE and SW monsoon wind systems. Lowest SSTs occur during the SW monsoon season because of upwelling of cold water, and highest SSTs can be found in the low-productivity intermonsoon season. The Mg/Ca-based temperature record reflects the integrated SST of the SW and NE monsoon seasons. The results show a glacial-interglacial SST difference of ~2°C, which is corroborated by findings from other Arabian Sea cores. At 19 ka B.P. a yet undescribed warm event of several hundred years duration is found, which is also reflected in the d18O record. A second centennial-scale high SST/low d18O event is observed at 17 ka B.P. This event forms the onset of the stepwise yet persistent trend toward Holocene temperatures. Highest Mg/Ca-derived SSTs in the NIOP929 record occurred between 13 and 10 ka B.P. Interglacial SST is ~24°C, indicating influence of upwelling. The onset of Arabian Sea warming occurs when the North Atlantic is experiencing minimum temperatures. The rapid temperature variations at 19, 17, and 13 ka B.P. are difficult to explain with monsoon changes alone and are most likely also linked to regional hydrographic changes, such as trade wind induced variations in warm water advection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.