824 resultados para Sr isotope


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The benthic isotopic record of Miocene Cibicidoides from Site 709 provides a record of conditions in the Indian Ocean at a depth of about 3200 mbsf. As expected, the record qualitatively resembles those of other Deep Sea Drilling Project and Ocean Drilling Program sites. The data are consistent with the scenario for the evolution of thermohaline circulation in the Miocene Indian Ocean proposed by Woodruff and Savin (1989, doi:10.1029/PA004i001p00087). Further testing of that scenario, however, requires isotopic data for Cibicidoides from other Indian Ocean sites. There is a correlation between d13C values of Cibicidoides and planktonic:benthic (P:B)ratios of Site 709 sediments, implying a causal relationship between the corrosiveness of deep waters and concentration of CO2 derived from oxidation of organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abyssal peridotites are normally thought to be residues of melting of the mid-ocean ridge basalt (MORB) source and are presumably a record of processes affecting the upper mantle. Samples from a single section of abyssal peridotite from the Kane Transform area in the Atlantic Ocean were examined for 190Pt-186Os and 187Re-187Os systematics. They have uniform 186Os/188Os ratios with a mean of 0.1198353 +/- 7, identical to the mean of 0.1198340 +/-12 for Os-Ir alloys and chromitites believed to be representative of the upper mantle. While the Pt/Os ratios of the upper mantle may be affected locally by magmatic processes, these data show that the Pt/Os ratio for the bulk upper mantle has not deviated by more than about +/- 30% from a chondritic Pt/Os ratio over 4.5 billion years. These observations are consistent with the addition of a chondritic late veneer after core separation as the primary control on the highly siderophile element budget of the terrestrial upper mantle. The 187Os/188Os of the samples range from 0.12267 to 0.12760 and correlate well with Pt and Pt/Os, but not Re/Os. These relationships may be explained by variable amounts of partial melting with changing D(Re), reflecting in part garnet in the residue, with a model-dependent melting age between about 600 and 1700 Ma. A model where the correlation between Pt/Os and 187Os/188Os results from multiple ancient melting events, in mantle peridotites that were later juxtaposed by convection, is also consistent with these data. This melting event or events are evidently unrelated to recent melting under mid-ocean ridges, because recent melting would have disturbed the relationship between Pt/Os and 187Os/188Os. Instead, this section of abyssal peridotite may be a block of refractory mantle that remained isolated from the convecting portions of the upper mantle for 600 Ma to >1 Ga. Alternatively, Pt and Os may have been sequestered during more recent melting and possibly melt/rock reaction processes, thereby preserving an ancient melting history. If representative of other abyssal peridotites, then the rocks from this suite with subchondritic 187Os/188Os are not simple residues of recent MORB source melting at ridges, but instead have a more complex history. This suite of variably depleted samples projects to an undepleted present-day Pt/Os of about 2.2 and 187Os/188Os of about 0.128-0.129, consistent with estimates for the primitive upper mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed analyses of well-preserved carbonate samples from across the Cretaceous/Tertiary boundary in Hole 577 have revealed a significant decline in the d13C values of calcareous nannoplankton from the Maestrichtian to the Danian Age accompanied by a substantial reduction in carbonate accumulation rates. Benthic foraminifers, however, do not exhibit a shift in carbon composition similar to that recorded by the calcareous nannoplankton, but actually increase slightly over the same time interval. These results are similar to the earlier findings at two North Pacific Deep Sea Drilling Project locations, Sites 47.2 and 465, and are considered to represent a dramatic decrease in oceanic phytoplankton production associated with the catastrophic Cretaceous/Tertiary boundary extinctions. In addition, the change in carbon composition of calcareous nannoplankton across the Cretaceous/Tertiary boundary at Hole 577 is accompanied by only minor changes in the oxygen isotope trends of both calcareous nannoplankton and benthic foraminifers, suggesting that temperature variations in the North Pacific from the late Maestrichtian to the early Danian Age were insignificant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lower Miocene through upper Pleistocene benthic foraminifer assemblage records from Ocean Drilling Program Site 751 on the Southern Kerguelen Plateau (57°44'S, water depth 1634 m) were combined with benthic and planktonic foraminifer oxygen and carbon isotope records and high-resolution CaCO3 data from the same site. Implications for the Neogene productivity and paleoceanography of the southern Indian Ocean are discussed. We used distinctive features of the Miocene d18O and d13C curves for stratigraphic correlation. Coinciding with a lower middle Miocene hiatus from 14.2 to 13.4 Ma, there was a rapid increase in benthic d18O values by 1.2 per mil. This distinct increase occurs in middle Miocene benthic foraminifer oxygen isotope curves from all oceans. No major change, however, in benthic foraminifer faunal composition occurred in this period of growth of the Antarctic ice cap and cooling of deep ocean waters (14.9-14.2 Ma). A drastic change in benthic foraminifer faunas coincided with a hiatus from 8.4 to 5.9 Ma. Shortly after this hiatus, in the latest Miocene, the CaCO3 content of the sediments dropped from 75% to 0%. From that time ( 5.8 Ma) through the early Pliocene, Site 751 has been situated beneath a high biogenic siliceous productivity zone. Carbonate contents of upper Pliocene and Pleistocene sediments vary between 20% and 70%. The benthic foraminifer faunas in the uppermost Pliocene and lower Pleistocene reflect strong bottom current conditions, in contrast to those in the upper Pleistocene, which indicate calm sedimentation and high food supply. High d13C values of planktonic foraminifers compared with low values of benthic foraminifers suggest high primary productivity in the late Pleistocene. The changes in productivity were probably a result of latitudinal migration and meandering of the Polar Frontal Zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is devoted to a marine geophysical-geological research in the West Antarctic. This researche contributed to establishing the base geodesic network of the West Antarctic and supplemented geokinematic monitoring based on this network with geophysical and geologic information on structure and features of geomorphological and tectonic development of the South Ocean floor. Collected materials allow to conclude about the inhomogeneity of the Scotia Sea floor and about combination of fragments of a continental massif with young rift structures in conditions of the upwelling mantle. The ancient continental bridge, faunal connections between the South America and the West Antarctic has been destroyed by processes of destruction, taphrogeny and sea floor spreading. Structures of the Scotia and Caribbean Seas, North Fiji and Arctic Basins are similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents osmium (Os) isotope and elemental data for cleaned planktic foraminifera, authigenic Fe-Mn oxyhydroxides and pelagic carbonate host sediments from ODP site 758 in the southernmost reaches of the Bay of Bengal. The Os in the bulk sediments appears to be dominantly hydrogeneous (sourced by carbonate and Fe-Mn oxyhydroxide), but variations in this particular core are controlled by the presence of volcanic ash. Fe-Mn oxyhydroxide leachates (of the bulk sediments) from Holocene samples also yield an Os isotope composition close to that of seawater, but the record diverges from that of foraminifera at a depth corresponding to the oxic/post-oxic boundary, suggesting diagenetic mobilization of Os at depths below this. Holocene planktic foraminifera, cleaned using oxidative-reductive techniques, also give Os isotope compositions indistinguishable from modern seawater, but the record obtained for the past 150 kyr shows strong covaraitions of 187Os/188Os with both the local and global oxygen isotope record, with less radiogenic Os isotope compositions during glacial intervals. These results indicate that foraminifera provide a robust record of seawater Os isotope compositions, and comparison of the data obtained here with records from the other major oceans demonstrate global changes in 187Os/188Os over this time interval, while the covariation with oxygen isotopes suggest a process controlling the Os isotope composition that is in phase with global climate cycles. Global excursions to relatively unradiogenic 187Os/188Os during glacial intervals are consistent with decreased input of radiogenic continental material, reflecting cooler temperatures and reduced continental runoff. Modelling indicates that the shift to unradiogenic values during glacial intervals could be caused by an ~30% decrease in the global river flux, with an ~5% change in river composition. If the residence time of Os in the oceans is ~5 ka then the post-glacial recovery to present-day seawater values is consistent with a corresponding increase in the river flux of around 30%. However, if the residence time of Os is closer to 40 ka, as is suggested by the global river flux, then this demands either significant changes in both the riverine Os flux and composition of around 40% and 30%, respectively, that closely follow the oxygen isotope record, or else a short-lived post-glacial pulse of weathering some 75% greater than the steady-state flux. In either case, these results clearly indicate that climatic changes affect both the flux and composition of weathered material delivered to the oceans on glacial-interglacial timescales.