360 resultados para Geology--East (U.S.)--Maps
Resumo:
A near-bottom geological and geophysical survey was conducted at the western intersection of the Siqueiros Transform Fault and the East Pacific Rise. Transform-fault shear appears to distort the east flank of the rise crest in an area north of the fracture zone. In ward-facing scarps trend 335° and do not parallel the regional axis of spreading. Small-scale scarps reveal a hummocky bathymetry. The center of spreading is not a central peak but rather a 20-40 m deep, 1 km wide valley superimposed upon an 8 km wide ridge-crest horst. Small-scale topography indicates widespread volcanic flows within the valley. Two 0.75 km wide blocks flank the central valley. Fault scarps are more dominant on the western flank. Their alignment shifts from directions intermediate to parallel to the regional axis of spreading (355°). A median ridge within the fracture zone has a fault-block topography similar to that of the East Pacific Rise to the north. Dominant eastward-facing scarps trending 335° are on the west flank. A central depression, 1 km wide and 30 m deep, separates the dominantly fault-block regime of the west from the smoother topography of the east flank. This ridge originated by uplift due to faulting as well as by volcanism. Detailed mapping was concentrated in a perched basin (Dante's Hole) at the intersection of the rise crest and the fracture zone. Structural features suggest that Dante's Hole is an area subject to extreme shear and tensional drag resulting from transition between non-rigid and rigid crustal behavior. Normal E-W crustal spreading is probably taking place well within the northern confines of the basin. Possible residual spreading of this isolated rise crest coupled with shear drag within the transform fault could explain the structural isolation of Dante's Hole from the remainder of the Siqueiros Transform Fault.
Resumo:
Shipboard whole-core squeezing was used to measure pore water concentration vs depth profiles of [NO3]-, O2 and SiO2 at 12 stations in the equatorial Pacific along a transect from 15°S to 11°N at 135°W. The [NO3]- and SiO2 profiles were combined with fine-scale resistivity and porosity measurements to calculate benthic fluxes. After using O2 profiles, coupled with the [NO3]- profiles, to constrain the C:N of the degrading organic matter, the [NO3]- fluxes were converted to benthic organic carbon degradation rates. The range in benthic organic carbon degradation rates is 7-30 ?mol cm**-2 y**-1, with maximum values at the equator and minimum values at the southern end of the transect. The zonal trend of benthic degradation rates, with its equatorial maximum and with elevated values skewed to the north of the equator, is similar to the pattern of primary production observed in the region. Benthic organic carbon degradation is 1-2% of primary production. The range of benthic biogenic silica dissolution rates is 6.9-20 µmol cm**-2 y**-1, representing 2.5-5% of silicon fixation in the surface ocean of the region. Its zonal pattern is distinctly different from that of organic carbon degradation: the range in the ratio of silica dissolution to carbon degradation along the transect is 0.44-1.7 mol Si mol C**-1, with maximum values occurring between 12°S and 2°S, and with fairly constant values of 0.5-0.7 north of the equator. A box model calculation of the average lifetime of the organic carbon in the upper 1 cm of the sediments, where 80 +/- 11% of benthic organic carbon degradation occurs, indicates that it is short: from 3.1 years at high flux stations to 11 years at low flux stations. The reactive component of the organic matter must have a shorter lifetime than this average value. In contrast, the average lifetime of biogenic silica in the upper centimeter of these sediments is 55 +/- 28 years, and shows no systematic variations with benthic flux.
Resumo:
The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.
Resumo:
The data given in this and previous communications is insufficient to assess the quantitative role of these supplementary sources in the Indian Ocean, but they do not rule out their local significance. Elucidation of this problem requires further data on the characteristics of the composition and structure of nodules in various different metallogenic regions of the ocean floor. A study of the distribution of ore elements in nodules both depthwise and over the area of the floor together with compilation of the first schematic maps based on the results of analyses of samples from 54 stations) enables us to give a more precise empirical relation between the Mn, Fe, Ni, Cu, and Co contents in Indian Ocean nodules, the manganese ratio and the values of the oxidation potential, which vary regularly with depth. This in turn also enables us to confirm that formation of nodules completes the prolonged process of deposition of ore components from ocean waters, and the complex physico-chemical transformations of sediments in the bottom layer. Microprobe investigation of ore rinds revealed the nonuniform distribution of a num¬ber of elements within them, owing to the capacity of particles of hydrated oxides of manganese and iron to adsorb various elements. High concentration of individual elements is correlated with local sectors of the ore rinds, in which the presence of todorokite, in particular, has been noted. The appearance of this mineral apparently requires elevated Ca, Mg, Na, and K concentrations, because the stable crystalline phase of this specific mineral form of the psilomelane group may be formed when these cations are incorporated into a lattice of the delta-MnO2 type.
Resumo:
Fe, Mn, Cu, Ni, and Co contents in bottom sediment samples from the Clarion Clipperton fracture zone and Guatemala Basin were studied; maps of their distribution in the upper layer of sediments were prepared. At some stations contents of these elements were also measured in Pleistocene and Oligocene sediments. Elevated contents of five ore elements (except for Zn) were found at the East Pacific Rise and in the Clarion-Clipperton province; and of Mn, Ni, and Cu in the Guatemala basin. Increased zinc contents occur only in sediments of the East Pacific Rise and Guatemala Basin. Enrichment of sediments in these elements results from under¬water hydrothermal activity and high biological productivity.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
We have analyzed the major, trace, and rare earth element composition of surface sediments collected from a transect across the Equator at 135°W longitude in the Pacific Ocean. Comparing the behavior of this suite of elements to the CaCO3, opal, and Corg fluxes (which record sharp maxima at the Equator, previously documented at the same sampling stations) enables us to assess the relative significance of the various pathways by which trace elements are transported to the equatorial Pacific seafloor. The 1. (1) high biogenic source at the Equator, associated with equatorial divergence of surface water and upwelling of nutrient-rich water, and 2. (2) high aluminosilicate flux at 4°N, associated with increased terrigenous input from elevated rainfall at the Intertropical Convergence Zone (ITCZ) of the tradewinds, are the two most important fluxes with which elemental transport is affiliated. The biogenic flux at the Equator transports Ca and Sr structurally bound to carbonate tests and Mn primarily as an adsorbed component. Trace elements such as Cr, As, Pb, and the REEs are also influenced by the biogenic flux at the Equator, although this affiliation is not regionally dominant. Normative calculations suggest that extremely large fluxes of Ba and P at the Equator are carried by only small proportions of barite and apatite phases. The high terrigenous flux at the ITCZ has a profound effect on chemical transport to the seafloor, with elemental fluxes increasing tremendously and in parallel with Ti. Normative calculations, however, indicate that these fluxes are far in excess of what can be supplied by lattice-bound terrigenous phases. The accumulation of Ba is greater than is affiliated with biogenic transport at the Equator, while the P flux at the ITCZ is only 10% less than at the Equator. This challenges the common view that Ba and P are essentially exclusively associated with biogenic fluxes. Many other elements (including Mn, Pb, As, and REEs) also record greater accumulation beneath the ITCZ than at the Equator. Thus, adsorptive scavenging by terrigenous paniculate matter, or phases intimately associated with them, appears to be an extremely important process regulating elemental transport to the equatorial Pacific seafloor. These findings emphasize the role of vertical transport to the sediment, and provide additional constraints on the paleochemical use of trace elements to track biogenic and terrigenous fluxes.
Resumo:
In an earlier paper by two of the authors the conclusion was reached that the 33 recognized species of oxides of Mn could be separated into 3 groups: 1) those which appeared to be persistently supergene in origin, 2) those which appeared to be persistently hypogene, and 3) those which were supergene in some localities and hypogene in other localities. When that paper was written, there were available about 250 X-ray diffraction analyses of mineral specimens, also 35 complete and about 150 partial chemical analyses. The conclusions of that paper were based upon the interpretation of the geologic conditions under which these specimens occurred. Late in the preparation of that paper, it seemed worthwhile to make numerous semiquantitative analyses of specimens, largely from 9 western [U.S.A] states, selected carefully from 5 groups of geologic environments, in the hope that the frequency and percentages of some elements might be distinctive of the several geologic groups. For this purpose, 95 specimens were selected from the 5 groups, as follows: 19 specimens interpreted as supergene oxides by the geologists who collected them, 35 specimens of hypogene vein oxides, 22 specimens of Mn-bearing hot spring aprons, 9 specimens of stratified oxides, and 10 specimens of deep-sea nodules. The spectrographic analyses here recorded indicate that a group of elements - W, Ba, Sr, Be, As, Sb, Tl, and Ge - are present more commonly, and largely in higher percentages, in the hypogene oxide than in the supergene oxides and thus serve to indicate different sources of the Mn. Also, the frequency and percentages of some of these elements indicate a genetic relation of the manganese oxides in hypogene veins, hot spring aprons, and stratified deposits. The analyses indicate a declining percentage of some elements from depth to the surface in these 3 related groups and increasing percentages of some other elements. It is concluded that some of the elements in deep-sea nodules indicate that sources other than rocks decomposed on the continents, probably vulcanism on the floors of the seas, have contributed to their formation.
Resumo:
Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
Mapping the abundance of 13C in leaf-wax components in surface sediments recovered from the seafloor off northwest Africa (0-35°N) reveals a clear pattern of delta13C distribution, indicating systematic changes in the proportions of terrestrial C3 and C4 plant input. At 20°N latitude, we find that isotopically enriched products characteristic of C4 plants account for more than 50% of the terrigenous inputs. This signal extends westward beneath the path of the dust-laden Sahara Air Layer (SAL). High C4 contributions, apparently carried by January trade winds, also extend far into the Gulf of Guinea. Similar distributions are obtained if summed pollen counts for the Chenopodiaceae-Amaranthaceae and the Poaceae are used as an independent C4 proxy. We conclude that the specificity of the latitudinal distribution of vegetation in North West Africa and the pathways of the wind systems (trade winds and SAL) are responsible for the observed isotopic patterns observed in the surface sediments. Molecular-isotopic maps on the marine-sedimentary time horizons (e.g., during the last glacial maximum) are thus a robust tool for assessing the phytogeographic changes on the tropical and sub-tropical continents, which have important implications for the changes in climatic and atmospheric conditions.
Resumo:
The paleo-oceanography of the southeastern North Atlantic Ocean during the last 150,000 yr has been studied using biogenous and terrigenous components of hemipelagic sediments sampled close to the northwest African continental margin. Variations of oxygen isotope ratios in shells of benthic calcareous foraminifers in two cores allow the assignment of absolute ages to these cores (in the best case at 1000 yr increments). The uncorrected bulk sedimentation rates of the longest core range from 3.4 to 7.6 cm/ 1000 yr during Interglacial conditions, and from 6.5 to 9.9 cm/1000 yr during Glacial conditions; all other cores have given results of the same order of magnitude, but with generally increasing values towards the continental edge. The distribution of sediment components allow us to make inferences about paleo-oceanographic changes in this region. Frequencies of biogenic components from benthic organisms, oxygen isotope ratios measured in benthic calcareous foraminiferal shells, the total carbonate contents of the sediment and distributions of biogenic components from planktonic organisms often fluctuate in concert. However, all fluctuations which can be attributed to changes of the bottom water masses (North Atlantic Deep Water) seem to precede by several thousand years those which can be linked to changes of the surface water mass distributions or to changes of the climate over the neighboring land masses. Late Quaternary planktonic foraminiferal assemblages in the cores from the northwest African continental margin can be defined satisfactorily in the way that distributions of assemblages found in sediment surface samples from the northeast Atlantic Ocean have been explained. The distributions of assemblages in the northwest African cores can also be used to estimate past sea surface temperatures and salinities. The downcore record of these estimates reveals two warm periods during the last 150,000 yr, the lower one corresponding to the oxygen isotope stage 5 e (equivalent to the Eemian proper in Europe), the upper one to the younger half of the Holocene. Winter surface water temperatures during oxygen isotope stages 6, 4, 3, and 2 are remarkably constant in most cores, while summer sea surface temperatures during stage 3 reach values comparable to those of the warm periods during the Late Holocene and Eemian. Estimated winter sea surface temperatures range from > 16 °C to < 11°C, the summer sea surface temperatures from > 22 °C to < 15 °C during the last 150,000 yr. Estimates of the winter sea surface salinities fluctuate between 36.6? and 35.5?, the higher values being restricted to the warm periods since the penultimate Glacial. Estimates for sea surface temperatures and salinities for two cores from the center of today's coastal upwelling region show less pronounced fluctuations than the record of the open ocean cores in the case of the station 12379 off Cape Barbas, more pronounced in the case of station 12328 off Cape Blanc. Seasonal differences between winter and summer sea surface temperatures derived from the estimated temperatures are today more pronounced in the boundary region of the ocean to the continent than further away from the continent. The differences are generally higher during warm climatic periods of the last 150,000 yr than during cooler ones. The abundance of terrigenous grains in the coarse fractions generally decreases with increasing distance from the continental edge, and also from south to north. The dominant portion of the terrigenous detritus is carried out into the ocean during the relatively cool climatic periods (stage 6, 4, later part of stage 3, stage 2 and oldest part of stage 1). The enhanced precision of dating combined with the stratigraphic resolution of these high deposition rate cores make it clear that the peaks of the terrigenous input off this part of the northwest African continental margin occur simultaneously with times of rapid sea level fluctuations resulting from large volume changes of the large Glacial ice sheets.
Resumo:
The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n = 26) and their 4 months old cubs-of-the-year (n = 38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Sum(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560±1500 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Sum(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Sum(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Sum(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.
Resumo:
Explosive ocean island volcanism in the Greenland-Iceland-Norwegian Sea (GIN Sea) is indicated by marine tephra layers at 10-300 ka. Peaks of explosive volcanism occurred in oxygen isotope stages 8, 7, 5 and 1. The depositional age of the tephra was estimated using the oxygen isotope stratigraphy and dating of marine records. Geochemical analyses of the tephra layers show that all originate from Iceland. Here we report the characteristics of tephra from these major Icelandic events in 30 deep-sea cores from the GIN Sea. Our findings provide constraints on the distribution of tephra from the eruption source. For the Vedde Ash (oxygen isotope stage 1) we estimate a minimum fallout area of 2*10**5 km**2, stretching from central Greenland in the west and southern Sweden in the east, to 71°N in the GIN Sea. The magnitude of the eruption and the regional wind conditions controlled the extent and concentrations of these ash fallout events. Oceanic circulation and differential settling may have affected the distribution and final deposition of ash particles such as bubble wall shards.