357 resultados para Angulogerina angulosa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiproxy record including benthic foraminifera, diatoms and XRF data of a marine sediment core from a SW Greenland fjord provides a detailed reconstruction of the oceanographic and climatic variations of the region during the last 4400 cal. years. The lower part of our record represents the final termination of the Holocene Thermal Maximum. After the onset of the 'Neoglaciation' at approximately 3.2 ka cal. BP, the fjord system was subject to a number of marked hydrographical changes that were closely linked to the general climatic and oceanographic development of the Labrador Sea and the North Atlantic region. Our data show that increased advection of Atlantic water (Irminger Sea Water) from the West Greenland Current into the Labrador Sea was a typical feature of Northeast Atlantic cooling episodes such as the 'Little Ice Age' and the 'European Dark Ages', while the advection of Irminger Sea Water decreased significantly during warm episodes such as the 'Mediaeval Warm Period' and the 'Roman Warm Period'.Whereas the 'Mediaeval Warm Period' was characterized by relatively cool climate as suggested by low meltwater production, the preceding 'Dark Ages' display higher meltwater runoff and consequently warmer climate. When compared with European climate, these regional climate anomalies indicate persisting patterns of advection of colder, respectively warmer air masses in the study region during these periods and thus a long-term seesaw climate pattern between West Greenland and Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Living and dead benthic Foraminifera of 26 sediment surface samples from the East Atlantic continental margin (off Portugal) are studied. The stations are located on two profiles off Cape Mondego and off Cape Sines, ranging in water depth from 45 to 3905 meters. The highest values of standing crop are on the shelf (200 m) (up to 420 specimens/10 cm**3). Below 1000 m water depth standing crop is low (5 -24 specimens/10 cm**3). 151species and species groups are distinguished. Most of the living species do occur in a wide depth range. Faunal depth boundaries are at 50/100m, at 600/800 m, and at 1000 m. Results published from the North Atlantic and the East Mediterranean do not differ from those obtained in samples off Portugal. Depth of water (e.g. hydrostatic pressure) or another factor being controlled by depth (e.g. limitation of food supply) seems to be the most important factor of the benthic foraminiferal distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantitative study of distribution and taxonomic composition of recent living and dead (without plasma) benthic foraminifers revealed three foraminiferal assemblages in bottom sediments of the Pacific Ocean at depths of 3350 to 4981 m. The assemblage dominated by epibenthic Lagenammina difflugiformis, Reophax dentaliniformis, and Saccorhiza ramose occupies slopes of underwater hills. The assemblage with a high share of infaunal Cribrostomoides subglobosum, C. nitidum, and Ammobaculites agglutinans is registered on an abyssal plateau. The assemblage with a significant proportion of large Astrorhiza and Reophax species, which are characterized by active way of life, populates gentle slopes and narrow depressions with potentially strong bottom currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.