414 resultados para lake sediments
Resumo:
A 450 year spring-summer flood layer time series at seasonal resolution has been established from the varved sediment record of Lake Ammersee (southern Germany), applying a novel methodological approach. The main results are (1) the attainment of a precise chronology by microscopic varve counting, (2) the identification of detrital layers representing flood-triggered fluxes of catchment material into the lake, and (3) the recognition of the seasonality of these flood layers from their microstratigraphic position within a varve. Tracing flood layers in a proximal and a distal core and correlating them by application of the precise chronology provided information on the depositional processes. Comparing the seasonal flood layer record with daily runoff data of the inflowing River Ammer for the period from 1926 to 1999 allowed the definition of an approximate threshold in flood magnitude above which the formation of flood layers becomes very likely. Moreover, it was possible for the first time to estimate the "completeness" of the flood layer time series and to recognize that mainly floods in spring and summer, representing the main flood seasons in this region, are well preserved in the sediment archive. Their frequency distribution over the entire 450 year time series is not stationary but reveals maxima for colder periods of the Little Ice Age when solar activity was reduced. The observed spring-summer flood layer frequency further shows trends similar to those of the occurrence of flood-prone weather regimes since A.D. 1881, probably suggesting a causal link between solar variability and changes in midlatitude atmospheric circulation patterns.
Resumo:
High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.
Resumo:
1. Late glacial and postglacial sediments from three former lakes in the Lake Garda area (Southern Alps) were investigated. 2. The pollen diagram from Bondone (1550 m) shows an older phase rich in NAP. A younger one corresponds with the Younger Dryas time according to two radiocarbon determinations. In the Preboreal no climatic deterioration could be found. 3. At first plants, which are nowadays typical for snow-ground, pioneer and dwarf shrub associations, immigrated into the surroundings of Bondone. In Alleröd times larch and pine appeared as the first trees. At the beginning of the Preboreal dense forest existed in that region. During the Alleröd timber line was at about 1500 m. 4. In the pollen diagrams from Saltarino (194 m) and Fiavè (654 m) an oldest period rich in NAP is followed by two stadial and two interstadial phases. Tree birches and larches immigrated during the oldest interstadial phase. 5. In the case of Saltarino and Fiavè only a preliminary dating could be made. A correlation seems to be possible with diagrams published by Zoller as well as with the diagram of Bondone. Discrepances in dating, which arise then, are discussed. According to the two possibilities of dating the youngest stadial is synchronous either with the so-called Piottino stadial or the Younger Dryas time. Consequently the oldest interstadial phase of Saltarino corresponds either with the Bölling or with a pre-Bölling interstadial. The last possibility seems to be more probable. 6. In the southern part of the Lake Garda area reforestation was preceded by a long shrub phase mainly with Juniperus. At about 650 m there was a period with Pinus mugo and only with a small amount of Juniperus before reforestation. A phase with Betula nana well known from areas north of the Alps could nowhere be found. 7. In the area under study larch appeared as the first tree. Lateron it has been the most important constituent of the forests near timber line. Birch, which plays an important role as a pioneer tree in Denmark - for instance at the transition of the pollen zones III/IV - as well as in Southern Germany during Bölling time, was of less importance at the southern border of the Alps. In that area the spreading of Pinus occurred very early causing dense forests. 8. During the last stadial phase (probably Younger Dryas time) dense forests with Pinus and Larix existed at 650 m. In the lower part of the Lake Garda area, however, both thermophilous trees as Quercus and herbs frequently occurred. This leads to the conclusion that during this time tree growth was limited by dryness in lower altitudes of the border of the Southern Alps. Pinus and Juniperus, however, do not show higher values in this period, a fact which cannot yet be explained. 9. A list of plants, which were found in the sediments, is compiled. Helodium lanatum, Dictamnus albus, Mercurialis cf. ovata, Buxus, Cerinthe cf. minor, Onosma, Anthericum and Asphodelus albus are findings, which are of special interest for the history of the flora of that region.
Resumo:
Hydro-acoustic surveys and coring campaigns at Lake Prespa were carried out between 2007 and 2009. This paper presents hydro-acoustic profiles and provide lithological and chronostratigraphical information from three up to 15.75 m long sediment sequences from the Macedonian side of the lake. The sediment sequences comprise glacial and interglacial sediments likely deposited from the end of Marine Isotope Stage (MIS) 5 to present day. The information implies a distinct change of sedimentation patterns at the Pleistocene/Holocene transition and the establishment of a relatively strong Holocene current system and deposition of channel-related contourite drift in Lake Prespa. Potential causes for the establishment of this current during the Holocene include significant lake level change, reduced winter ice cover, and/or higher aeolian activity.
Resumo:
226Ra is used to document the growth histories of six manganese nodules from Oneida Lake, New York. Detailed sectioning and analysis reveal that there are discontinuous gradients in 226Ra content in these samples. These gradients result from periods of rapid growth (>1 mm/100 years) separated by periods of no growth of erosion. Although the 226Ra 'age' of the nodules approximates the age of Oneida Lake, the nodules are not sediment-covered because they occur only in areas of the lake where fine-grained sediments are not accumulating.
Resumo:
The island of Isla de los Estados is situated at 54.5°S, 64°W, east of Argentinian Tierra del Fuego, and is located in a sensitive geographic position in relation to the zonal circulation between Antarctica and South America. Its terrestrial records of the last deglaciation, recording atmospheric conditions but within an oceanic setting, can help to clarify changes of regional circulation patterns, both atmospheric and marine. Here, we present geochemical analyses from 16-10 ka cal BP of a peat core from Lago Galvarne Bog at the northern coast of the island, and a lake sediment core from Laguna Cascada 3 km further south. The data comprise TC, TN, loss on ignition analyses and continuous XRF scanning on both cores as well as age-depth modeling based on AMS-14C dating. Deglaciation and onset of peat formation in the coastal areas began before 16 ka cal BP followed by a rapid glacial retreat and the start of lacustrine sedimentation further inland. Data suggest initially windy conditions with permafrost succeeded by gradually warmer and wetter conditions until ca 14.5 ka cal BP. The warming trend slows down until ca 13.5 ka cal BP, followed by arid conditions culminating around 12.8 ka cal BP. Our data suggest fairly warm conditions and the establishment of denser peat and forest vegetation ca 10.6 ka cal BP, contemporaneous with the onset of the Antarctic thermal optimum. This indicates large-scale shifts in the placement of zonal flow and the Westerlies at the beginning of the Holocene.
Resumo:
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ~135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ~340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (~400±30 m below MSL). At ~120 and ~85 ka, Lake Samra rose to ~320 m below MSL while it dropped to levels lower than ?380 m below MSL at ~135 and ~75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.
Resumo:
This article reviews the history, chemical stratification, biology and biogeochemistry of Ace Lake, which is one of the many marine-derived meromictic (permanently stratified) lakes in the Vestfold Hills, Eastern Antarctica. The lake has an area of 18 ha, a maximum depth of 25 m, and a salinity range from 7 to 43 g l**-1. The lake mixes to a depth of 7 m in late winter as a result of brine freeze out during ice formation. Deeper mixing is precluded by a sharp halocline. The water beneath 12 m is permanently anoxic, The lake was formed approximately 10,800 yr BP as the polar ice cap melted. Sea level rise 7,800 yr BP resulted in invasion of seawater into the initially freshwater lake. Subsequently, sea level dropped, and the now saline lake became isolated from the ocean. The biota of the lake was derived from species trapped when the connection between the lake and the ocean was cut off. The oxic zone above 12 m supports a relatively simple community which includes microbial mats, four major species of phytoplankton (including a picocyanobacterium), two copepod species, and a variety of heterotrophic flagellates and ciliates. The anoxic zone contains populations of photosynthetic sulfur, sulfate reducing, fermentative and methanogenic bacteria, which combine to remineralise organic carbon which sediments from the upper waters. Research on the physics, biology and chemistry of Ace Lake has contributed significantly to knowledge of Antarctic meromictic lakes.
Resumo:
Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.
Resumo:
Total concentrations of algal pigments, organic C, C, N, P and S were determined in surface sediments from the littoral zone of 21 lakes in ice-free areas of northern Victoria Land (Antarctica) with different climatic and environmental conditions. Concentrations of major ions and nutrients were also determined in water samples from the same lakes. The latter samples had extremely variable chemical compositions; however, all the lakes resulted oligotrophic. Pigment concentrations in surface sediments were comparable to those reported for other Antarctic lakes and lower than those in oligotrophic lakes at lower latitudes. Cyanophyta, Chlorophyta and Bacillariophyta were the main taxa identified. These taxa correspond to those reported in previous microscopy-based studies on Antarctic phytoplankton and phytobenthos. Discriminant Function Analysis and Canonical Correspondence Analysis of data indicate that the distribution of pigments in these Victoria Land lakes depends mainly on their geographical location (particularly the distance from the sea) and nutrient status.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
ntegrated terrestrial and marine records of northeast African vegetation are needed to provide long high resolution records of environmental variability with established links to specific terrestrial environments. In this study, we compare records of terrestrial vegetation preserved in marine sediments in the Gulf of Aden [Deep Sea Drilling Project (DSDP) Site 231] and an outcrop of lacustrine sediments in the Turkana Basin, Kenya, part of the East African Rift System. We analyzed higher plant biomarkers in sediments from both deposits of known equivalent age, corresponding to a ca. 50-100 ka humid interval prior to the b-Tulu Bor eruption ca. 3.40 Ma, when the Lokochot Lake occupied part of the Turkana Basin. Molecular abundance distributions indicate that long chain n-alkanoic acids in marine sediments are the most reliable proxy for terrestrial vegetation (Carbon Preference Index, CPI = 4.5), with more cautious interpretation needed for n-alkanes and lacustrine archives. Marine sediments record carbon isotopic variability in terrestrial biomarkers of 2-3 per mil, roughly equivalent to 20% variability in the C3/C4 vegetation contribution. The proportion of C4 vegetation apparently increased at times of low terrigenous dust input. Terrestrial sediments reveal much larger (2-10 per mil) shifts in n-alkanoic acid delta13C values. However, molecular abundance and isotopic composition suggest that microbial sources may also contribute fatty acids, contaminating the lacustrine sedimentary record of terrestrial vegetation.
Resumo:
The data base for this study is represented by essentially nonevaporitic Messinian sediments recovered at ODP Sites 654, 653, 652, and 656 along the eastern Sardinian margin, and of the overlying early Pliocene oozes. Grain-size distribution, carbonate content, and microscopic observation of the sand size fractions were investigated. Messinian paleoenvironments, documented in the western Tyrrhenian Sea (ODP Sites 654 and 653), provide additional evidence supporting the deep basin desiccation model. A sharp lithologic contrast between early Pliocene pelagic oozes and latest Messinian conformable gypsiferous silts supports this model. The "lago-mare" biofacies was only occasionally observed in the shallowest site and is limited to the topmost part of the Messinian. Sites 652 and 656, lying in the deeper part of the Tyrrhenian and located on the downthrown side of an important eastward dipping fault system known as "Faglia centrale" are characterized by terrigenous sedimentation, with partly recycled minor evaporites. Of special interest is Site 652, where the thickness of the (probable) Messinian is 530 m. Sedimentary characters indicate a permanently subaqueous but nonmarine environment, with turbidites accumulating in a rapidly subsiding basin. According to the model proposed, this basin was fed by continental waters during times of maximum evaporitic draw-down, with temporary marine incursions from the west or southwest when the water level was higher. A basement ridge separated the evaporating pond from this endoreic lake located on the opposite (eastern) margin of the Tyrrhenian Basin, which was then limited to its western part. Post-Messinian reactivation of the "Faglia centrale" is necessary to account for the inversion of the relief.
Resumo:
In anoxic environments, volatile methylated sulfides like methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. When studying the effect of temperature on hydrogenotrophic microbial activity, we observed formation of DMS in anoxic sediment of Lake Plußsee at 55 °C. Subsequent experiments strongly suggested that the formation of DMS involves fixation of bicarbonate via a reductive pathway in analogy to methanogenesis and engages methylation of MT. DMS formation was enhanced by addition of bicarbonate and further increased when both bicarbonate and H2 were supplemented. Inhibition of DMS formation by 2-bromoethanesulfonate points to the involvement of methanogens. Compared to the accumulation of DMS, MT showed the opposite trend but there was no apparent 1:1 stoichiometric ratio between both compounds. Both DMS and MT had negative d13C values of -62 per mil and -55 per mil, respectively. Labeling with NaH**13CO3 showed more rapid incorporation of bicarbonate into DMS than into MT. The stable carbon isotopic evidence implies that bicarbonate was fixed via a reductive pathway of methanogenesis, and the generated methyl coenzyme M became the methyl donor for MT methylation. Neither DMS nor MT accumulation were stimulated by addition of the methyl-group donors methanol and syringic acid or by the methyl-group acceptor hydrogen sulphide. The source of MT was further investigated in a H2**35S labeling experiment, which demonstrated a microbially-mediated process of hydrogen sulfide methylation to MT that accounted for only <10% of the accumulation rates of DMS. Therefore, the major source of the 13C-depleted MT was neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for isotopically depleted MT, such as other organic precursors like methionine, are discussed. This DMS-forming pathway may be relevant for anoxic environments such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments.