913 resultados para Oxygen Isotopes
Resumo:
This study presents osmium (Os) isotope and elemental data for cleaned planktic foraminifera, authigenic Fe-Mn oxyhydroxides and pelagic carbonate host sediments from ODP site 758 in the southernmost reaches of the Bay of Bengal. The Os in the bulk sediments appears to be dominantly hydrogeneous (sourced by carbonate and Fe-Mn oxyhydroxide), but variations in this particular core are controlled by the presence of volcanic ash. Fe-Mn oxyhydroxide leachates (of the bulk sediments) from Holocene samples also yield an Os isotope composition close to that of seawater, but the record diverges from that of foraminifera at a depth corresponding to the oxic/post-oxic boundary, suggesting diagenetic mobilization of Os at depths below this. Holocene planktic foraminifera, cleaned using oxidative-reductive techniques, also give Os isotope compositions indistinguishable from modern seawater, but the record obtained for the past 150 kyr shows strong covaraitions of 187Os/188Os with both the local and global oxygen isotope record, with less radiogenic Os isotope compositions during glacial intervals. These results indicate that foraminifera provide a robust record of seawater Os isotope compositions, and comparison of the data obtained here with records from the other major oceans demonstrate global changes in 187Os/188Os over this time interval, while the covariation with oxygen isotopes suggest a process controlling the Os isotope composition that is in phase with global climate cycles. Global excursions to relatively unradiogenic 187Os/188Os during glacial intervals are consistent with decreased input of radiogenic continental material, reflecting cooler temperatures and reduced continental runoff. Modelling indicates that the shift to unradiogenic values during glacial intervals could be caused by an ~30% decrease in the global river flux, with an ~5% change in river composition. If the residence time of Os in the oceans is ~5 ka then the post-glacial recovery to present-day seawater values is consistent with a corresponding increase in the river flux of around 30%. However, if the residence time of Os is closer to 40 ka, as is suggested by the global river flux, then this demands either significant changes in both the riverine Os flux and composition of around 40% and 30%, respectively, that closely follow the oxygen isotope record, or else a short-lived post-glacial pulse of weathering some 75% greater than the steady-state flux. In either case, these results clearly indicate that climatic changes affect both the flux and composition of weathered material delivered to the oceans on glacial-interglacial timescales.
Resumo:
Fluid inclusions of protogenous halite, which were collected from two boreholes in the Charhan Salt Lake in the north part of the Qinghai-Xizang Plateau, werea nalyzed for their hydrogen and oxygen isotopes and for their Na, Mg etc. ions.On these grounds, the evolution of lake environment in this region during the last 50 000 years are discussed in this paper. The emphasis is to discuss the time range of extremely arid and cold climate at the last Glacial stage and the geological event of playa associated with such a climate.The guanidine hydrochloride method was used for measurement of hydrogen and oxygen stable isotopes. The measurement of Na, Mg etc. ions were achieved by determination of crystallization temperature of hydrohalite under microscope and then by calculation of chemical compositions of inclusion fluid using a thermodynamic model.The results obtained show that protogenous halite in the Charhan Lake area was formed in three different environment conditions: (1) In fluid inclusions of halite formed in the early period (50 000-30 000 a B. P. ), dD averages -14.9 per mil, d(18)O averages 8.37 per mil, and Mg(2+)ranges from 0.42 to 1.59 mol/L. Their plotting points fall on the right top part of the evaporation line of the present Charhan Lake area, indicating that the Lake water at that time had a higher concentration of brine, and the climate was hot and dry. (2) In fluid inclusions of halite formed in the middle period (30 000-15 000 a B. P.), SD average -66.0 per mil, d(18)O averages 1.00 pr mil, and Mg(2+) 1 mol/L. Their plotting points fall on the left low part of the evaporation line, indicating that the lake water at that time had a concentration of brine lower than that in the early period, and the environment was cold and dry. (3) In fluid inclusions of halite formed in the late period (15 000-present), dD averages 30.8 per mil, d(18)O averages 5.85 per mil, and Mg(2+) M 1 mol/L. Their plotting fall on the evaporation line, indicating that the climate environment at that time was warm and dry, almost the same as the present.The temperature variation of the last 50 000 years in the Charhan Lake area was calculated using the conversion equation proposed by Lorious et al. The time range of the Great ice age of the Last Glacial Stage is about 21 000-15 000 a B.P., which basically coincides with the time of a worldwide low sea level. The temperature in that period was below 0°C and 6-7°C lower than now. Because of lower temperatures, water supply to the lake area decreased rapidly and the concentration of lake water increased sharply. Therefore the Mg(2+) concentration in inclusion fluid reaches or closes to 2mol/L and the Mg/Na ratio varies within a very wide range. These show that the Charhan Lake at that time entered its playa stage. The Charhan Salt Lake is a typical one in the north part of the Qinghai-Xizang Plateau. It can be supposed that the extremely arid and cold climate of the Great Ice Age made most lakes in the north part of the Qinghai-Xizang Plateau enter their playa stage. This event is of importance for formation of salt resources.
Resumo:
Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (d18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for d18OP. Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi. We found d18OP values in a range from 12.8 per mill to 26.6 per mill, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium d18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system.
Resumo:
Distribution of planktonic foraminiferal tests was studied in four drill cores of Upper Quaternary sediments from the zone of influence of the Canary upwelling and in nine sediment cores from the zone of the Benguela upwelling. Paleotemperatures were reconstructed from these data. It was established that under conditions during stadials, interstadials, and interglacials of Quaternary time, the upwelling existed continuously, intensifying and expanding during colder epochs and weakening and contracting in the warmer intervals. During the last stadial (about 18000 yrs ago), relative cooling of sea waters as compared to central regions of the ocean in the zone of the Canary upwelling was not lower than 9°C (4.5°C higher than at present time), and in the zone of the Benguela upwelling it was not lower than 15°C (8.5°C higher than at present time).