326 resultados para ARGOS Location-only transmitter KS-101
Resumo:
Colluvial deposits consisting of silts and loams were detected in several climatologically different areas of NE Tibet (3200-3700 m a.s.l.). Layering, distinct organic content and low content of coarse matter as well as location in the relief revealed an origin from low-energy slope erosion (hillwash). Underlying and intercalated paleosols were classified as Chernozems, Phaeozems, Regosols and Fluvisols. Fifteen radiocarbon datings predominant on charcoal from both colluvial layers and paleosols yielded ages between 8988 ± 66 and 3512 ± 56 uncal BP. Natural or anthropogenic factors could have been the triggers of the erosional processes derived. It remains unclear which reason was mainly responsible, due to controversial paleoclimatic and geomorphic records as well as insufficient archaeological knowledge from this region. Determinations of charcoal and fossil wood revealed the Holocene occurrence of tree species (spruce, juniper) for areas which nowadays have no trees or only few forest islands. Thus large areas of NE Tibet which are at present steppes and alpine pastures were forested in the past.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their physical (grain-size distribution), mineralogical, and chemical (major elements) composition. On the basis of these data the samples were grouped into sets of samples that most likely originated from the same source area. In addition, shipboard-collected atmospheric meteorological data, modeled 4-day back trajectories for each sampling day and location, and Total Ozone Mapping Spectrometer aerosol index data for the time period of dust collection (February-March 1998) were combined and used to reconstruct the sources of the groups of dust samples. On the basis of these data we were able to determine the provenance of the various dust samples. It appears that the bulk of the wind-blown sediments that are deposited in the proximal equatorial Atlantic Ocean are transported in the lower level (>~900 hPa) NE trade wind layer, which is a very dominant feature north of the Intertropical Convergence Zone (ITCZ). However, south of the surface expression of the ITCZ, down to 5°S, where surface winds are southwesterly, we still collected sediments that originated from the north and east, carried there by the NE trade wind layer, as well as by easterly winds from higher altitudes. The fact that the size of the wind-blown dust depends not only on the wind strength of the transporting agent but also on the distance to the source hampers a direct comparison of the dust's size distributions and measured wind strengths. However, a comparison between eolian dust and terrigenous sediments collected in three submarine sediment traps off the west coast of NW Africa shows that knowledge of the composition of eolian dust is a prerequisite for the interpretation of paleorecords obtained from sediment cores in the equatorial Atlantic.