531 resultados para Predicted environmental concentration (PEC)
Resumo:
Abstract Hydrocarbons in surface sediments were studied quantitatively and qualitatively in 18 stations along the coastline of Gabes Gulf in Tunisia. The results show that the total hydrocarbon levels vary along a wide range from 90 to 1,800 ppm. The GC-MS profiles of aliphatic hydrocarbons vary according to the stations and show that the hydrocarbons were derived from various sources. A special feature prevalent in several stations was identified: aliphatic hydrocarbons with distinctive chemical features. This includes a high abundance of even-numbered n-alkanes (n-C14 - n-C26, maximizing at n-C18, n-C20 and n-C22) and n-alk-1-enes (n-C14:1 - n-C24:1, maximizing at n-C16:1, n-C18:1, n-C20:1 and n-C22:1). This unusual predominance of even-numbered n-alkanes/alkenes is reported for the first time in the Gulf of Gabes and it thus contributes to the information on the rare occurrence of such distributions in the geosphere.
Resumo:
Within generally calcareous sediment sequences, layers of variable thickness of the giant diatom Ethmodiscus were found in five cores recovered in the Subtropical South Atlantic between 23° and 33°S from both sides of the Mid-Atlantic Ridge. Two types of oozes occur: (almost) monospecific layers of Ethmodiscus and layers dominated by Ethmodiscus, with several accompanying tropical/subtropical, oligotrophic-water diatoms. The two thickest Ethmodiscus layers occur in GeoB3801-6 around 29°S, and accumulated during late MIS 14 and MIS 12, respectively. Downcore concentrations of Ethmodiscus valves range between 3.4 10 4 and 2.3 10 7 valves g -1. We discuss the ooze formation in the context of migration of frontal systems and changes in the thermohaline circulation. The occurrence of Ethmodiscus oozes in sediments underlying the present-day pelagic, low-nutrient waters is associated with a terminal event of the Mid-Pleistocene Transition at around 530 ka, when the ocean circulation rearranged after a period of reduced NADW production.
Resumo:
Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO3]2-, there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO3]2-. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.