360 resultados para Adenosine 5-Triphosphate, per cell


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method was developed to extract adenine nucleotides AMP, ADP, and ATP from marine macroalgal tissue to gain information on the cellular energy charge. Quantification was carried out by high performance liquid chromatography (HPLC). Three species from the rocky shore of the island of Helgoland (German Bight) were examined: Laminaria saccharina (Phaeophyta), Chondrus crispus (Rhodophyta), and Ulva lactuca (Chlorophyta). In L. saccharina and C. crispus, the adenylate energy charge (AEC) was determined in different thallus regions. AEC varied in relation to tissue age and function. Higher AEC values typically occurred in thallus regions with meristematic activity. Furthermore, L. saccharina and U. lactuca were exposed to UV-A and elevated UV-B radiation. The AEC was calculated and the maximal quantum yield of photosystem II (Fv/Fm) was determined as indicators for UV stress. In both species, the AEC remained at high values (0.72 ± 0.04), while Fv/Fm dropped rapidly. The results show that the photosynthesis of the phaeophyte is more resistant to UV radiation than the chlorophyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils from the maritime (Arctowski Station, King George Island) and coastal continental (Casey Station, Wilkes Land) Antarctic region are described with respect to pedology, isotopic and microbial environments. They are classified as leptosols, regosols, podzols, and histosols. Only surface layers (1-3 cm) contain sufficient organic material to provide a favourable environment for microbial communities and, further, for accumulations of organic matter. Variability of biological and chemical properties is high on a centimeter scale with depth and in the range of decimeters in horizontal scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. ATP in deep-sea sediments can be determined after it is adsorbed on a mixture of the sediment and calcium carbonate by measuring the luminescence of the reaction of the mixture and luciferin-luciferase. 2. ATP contents of the toplayer of northeastern Atlantic sediments (Josephine Bank and northern Canary Basin) decrease with increasing depths of 252, 408, 1445, 1769, 2149, 4897, 5510m: 0.96, 0.61, 0.13, 0.10, 0.21, 0.05, 0.07 µg ATP/ml wet sediment. The decreasing values are in accordance with the decrease of macrobenthos and meiobenthos biomass in the deep-sea. 3. The ATP content of deep-sea nematodes is about 1 ? of their wet weight. 4. At the two deepest stations, less than 50% of the ATP measured in the sediment is represented by nematodes, copepods, other "hard" meiofauna groups and bacteria.