312 resultados para 919
Resumo:
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Resumo:
The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).
Resumo:
Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (epsilon-Nd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and epsilon-Nd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ~25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
Well-dated benthic foraminifer oxygen isotopic records (d18O) from different water depths and locations within the Atlantic Ocean exhibit distinct patterns and significant differences in timing over the last deglaciation. This has two implications: on the one hand, it confirms that benthic d18O cannot be used as a global correlation tool with millennial-scale precision, but on the other hand, the combination of benthic isotopic records with independent dating provides a wealth of information on past circulation changes. Comparing new South Atlantic benthic isotopic data with published benthic isotopic records, we show that (1) circulation changes first affected benthic d18O in the 1000-2200 m range, with marked decreases in benthic d18O taking place at ~17.5 cal. kyr B.P. (ka) due to the southward propagation of brine waters generated in the Nordic Seas during Heinrich Stadial 1 (HS1) cold period; (2) the arrival of d18O-depleted deglacial meltwater took place later at deeper North Atlantic sites; (3) hydrographic changes recorded in North Atlantic cores below 3000 m during HS1 do not correspond to simple alternations between northern- and southern-sourced water but likely reflect instead the incursion of brine-generated deep water of northern as well as southern origin; and (4) South Atlantic waters at ~44°S and ~3800 m depth remained isolated from better-ventilated northern-sourced water masses until after the resumption of North Atlantic Deep Water (NADW) formation at the onset of the Bølling-Allerod, which led to the propagation of NADW into the South Atlantic.
Resumo:
Results from a large scale soil mapping on the North Frisian mainland indicate, that field characteristics, particularly the grain-size, bedding, and degree of compaction, with in general determine the soil units mapped, are closely correlated with each other and with other field and laboratory data. Exchangable ions and the Ca/Mg-ratio, however, indicate no explainable connections with the soil units and with most of the other field characteristics but are determined postsedimentarily by processes of the development of soil and landscape, such as desalting and decalcification, silicate weathering, fresh- and salt-water innundations, salty precipitations, salty groundwater and fertilization. Therefore the Ca/Mg-ratio is not suitable to differentiate between more clayey compacted Knick-marsh soils and less clayey permeable Klei-marsh soils. The results confirm that marsh-soils may only be classified and mapped by means of all available field-data which have to be supplemented by laboratory investigations.