317 resultados para Silke Schönherr
Resumo:
Paleoenvironmental studies and climate models demonstrate that fluvial runoff and moisture availability in the Caribbean hinterland react very sensitively to climatic variations. Late Pleistocene and Holocene climate records document pronounced dry and wet periods over tropical South America mainly caused by shifts of the Intertropical Convergence Zone (ITCZ). However, forcing mechanisms for changes in the ITCZ position remain controversial. Here we present high-resolution foraminiferal Ba/Ca and d18Oseawater records from a core located within the Orinoco River outflow documenting abrupt hydrological changes in the Orinoco catchment area during the deglacial and Holocene. Our data, obtained from the surface-dwelling foraminifera Globigerinoides ruber (pink), show an abrupt increase in Ba/Ca ratios in the early Holocene, starting ~600 yr after the end of the Younger Dryas (YD) cold interval at ca. 10.8 ka and suggesting a massive reorganization of moisture sources in northern South America. In contrast, the salinity dependent d18Oseawater from the same samples shows a gradual decrease starting at the end of the YD. The offset of our Ba/Ca peak excludes meltwater release in conjunction with the northern Andean glacier retreat well before the end of the YD as a forcing mechanism. We suggest that the Ba/Ca record documents an abrupt increase in Ba-rich waters of a northern Andean source caused by the insolation-driven shift of the ITCZ and/or enhanced monsoon activity.
Resumo:
Carbon-isotope stratigraphy has proven to be a powerful tool in the global correlation of Cretaceous successions. Here we present new, high-resolution carbon-isotope records for the Global Boundary Stratotype Section and Point (GSSP) of the Maastrichtian stage at Tercis les Bains (France), the Bottaccione and Contessa sections at Gubbio (Italy), and the coastal sections at Norfolk (UK) to provide a global d13C correlation between shelf-sea and oceanic sites. The new d13C records are correlated with d13C-stratigraphies of the boreal chalk sea (Trunch borehole, Norfolk, UK, Lägerdorf-Kronsmoor-Hemmoor section, northern Germany, Stevns-1 core, Denmark), the tropical Pacific (ODP-Hole 1210B, Shatsky Rise) and the South Atlantic and Southern Ocean (DSDP Hole 525A, ODP Hole 690C) by using an assembled Gubbio d13C record as a reference curve. The global correlation allows the identification of significant high-frequency d13C variations that occur superimposed on prominent Campanian-Maastrichtian events, namely the Late Campanian Event (LCE), the Campanian-Maastrichtian Boundary Event (CMBE), the mid-Maastrichtian Event (MME), and the Cretaceous-Paleogene transition (KPgE). The carbon-isotope events are correlated with the geomagnetic polarity scale recalculated using the astronomical 40Ar/39Ar calibration of the Fish Canyon sanidine. This technique allows the evaluation of the relative timing of base occurrences of stratigraphic index fossils such as ammonites, planktonic foraminifera and calcareous nannofossils. Furthermore, the Campanian-Maastrichtian boundary, as defined in the stratotype at Tercis, can be precisely positioned relative to carbon-isotope stratigraphy and the geomagnetic polarity timescale. The average value for the age of the Campanian-Maastrichtian boundary is 72.1 ± 0.1 Ma, estimated by three independent approaches that utilize the Fish Canyon sanidine calibration and Option 2 of the Maastrichtian astronomical timescale. The CMBE covers a time span of 2.5 Myr and reflects changes in the global carbon cycle probably related to tectonic processes than to glacioeustasy. The duration of the high-frequency d13C variations instead coincides with the frequency band of long eccentricity, indicative of orbital forcing of changes in climate and the global carbon cycle.
Resumo:
During the latest Cretaceous cooling phase, a positive shift in benthic foraminiferal d18O values lasting about 1.5 Myr (71.5-70 Ma) can be observed at a global scale (Campanian-Maastrichtian Boundary Event, CMBE). This d18O excursion is interpreted as being influenced by a change in intermediate- to deep-water circulation or by temporal build-up of Antarctic ice sheets. Here we test whether benthic foraminiferal assemblages from a southern high-latitudinal site near Antarctica (ODP Site 690) are influenced by the CMBE. If the d18O transition reflects a change in intermediate- to deep-water circulation from low-latitude to high-latitude water masses, then this change would result in cooler temperatures, higher oxygen concentration, and possibly lower organic-matter flux at the seafloor, resulting in a major benthic foraminiferal assemblage change. If, however, the d18O transition was mainly triggered by ice formation, no considerable compositional difference in benthic foraminiferal assemblages would be expected. Our data show a separation of the studied succession into two parts with distinctly different benthic foraminiferal assemblages. Species dominating the older part (73.0-70.5 Ma) tolerate less bottom water oxygenation and are typical components of low-latitude assemblages. In contrast, the younger part (70.0-68.0 Ma) is characterized by species that indicate well-oxygenated bottom waters and species common in high-latitude assemblages. We interpret the observed change in benthic foraminiferal assemblages toward a well-oxygenated environment to reflect the onset of a shift from low-latitude toward high-latitude dominated intermediate- to deep-water sources. This implies that a change in oceanic circulation was at least a major component of the CMBE.
Resumo:
Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.
Resumo:
Past river run-off is an important measure for the continental hydrological cycle and the as-sessment of freshwater input into the ocean. However, paleosalinity reconstructions applying different proxies in parallel often show offsets between the respective methods. Here, we compare the established foraminiferal Ba/Ca and d18OWATER salinity proxies for their capability to record the highly seasonal Orinoco freshwater plume in the eastern Caribbean. For this purpose we obtained a data set comprising Ba/Ca and d18OWATER determined on multiple spe-cies of planktonic foraminifera from core tops distributed around the Orinoco river mouth. Our findings indicate that interpretations based on either proxy could lead to different conclu-sions. In particular, Ba/Ca and d18OWATER diverge in their spatial distribution due to different governing factors. Apparently, the Orinoco freshwater plume is best tracked by Ba/Ca ratios of G. ruber (pink and sensu lato morphotypes), while d18OWATER based on the same species is more related to the local precipitation-evaporation balance overprinting the riverine freshwater contribution. Other shallow dwelling species (G. sacculifer, O. universa) show a muted response to the freshwater discharge, most likely due to their ecological and habitat prefer-ences. Extremely high Ba/Ca ratios recorded by G. ruber are attributed to Ba2+-desorption from suspended matter derived from the Orinoco. Samples taken most proximal to the freshwater source do not show pronounced Ba/Ca or d18OWATER anomalies. Here, the suspension loaded freshwater lid developing during maximum discharge suppresses foraminiferal populations. Both proxies are therefore biased towards dry season conditions at these sites, when surface salinity is only minimally reduced.
Resumo:
Ocean acidification and warming will be most pronounced in the Arctic Ocean. Aragonite shell-bearing pteropods in the Arctic are expected to be among the first species to suffer from ocean acidification. Carbonate undersaturation in the Arctic will first occur in winter and because this period is also characterized by low food availability, the overwintering stages of polar pteropods may develop into a bottleneck in their life cycle. The impacts of ocean acidification and warming on growth, shell degradation (dissolution), and mortality of two thecosome pteropods, the polar Limacina helicina and the boreal L. retroversa, were studied for the first time during the Arctic winter in the Kongsfjord (Svalbard). The abundance of L. helicina and L. retroversa varied from 23.5 to 120 ind /m2 and 12 to 38 ind /m2, and the mean shell size ranged from 920 to 981 µm and 810 to 823 µm, respectively. Seawater was aragonite-undersaturated at the overwintering depths of pteropods on two out of ten days of our observations. A 7-day experiment [temperature levels: 2 and 7 °C, pCO2 levels: 350, 650 (only for L. helicina) and 880 ?atm] revealed a significant pCO2 effect on shell degradation in both species, and synergistic effects between temperature and pCO2 for L. helicina. A comparison of live and dead specimens kept under the same experimental conditions indicated that both species were capable of actively reducing the impacts of acidification on shell dissolution. A higher vulnerability to increasing pCO2 and temperature during the winter season is indicated compared with a similar study from fall 2009. Considering the species winter phenology and the seasonal changes in carbonate chemistry in Arctic waters, negative climate change effects on Arctic thecosomes are likely to show up first during winter, possibly well before ocean acidification effects become detectable during the summer season.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Stable isotope (SI) ratios of carbon (d13C) and nitrogen (d15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, d13C was corrected using a lipid-normalisation model. d15N signals ranged from 3.0-6.9 per mil in mesopelagic species to 7.0-9.5 per mil in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower d15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher d13C and d15N values than specimens at the eastern stations. These longitudinal changes in d13C and d15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.
Resumo:
We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6-3.9 Ma) and was combined with d18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in d18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma-mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the d18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record <4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ~2°C.
Resumo:
Core-top samples from the eastern tropical Pacific (10°N to 20°S) were used to test whether the ratio between Globorotalia menardii cultrata and Neogloboquadrina dutertrei abundance (Rc/d) and the oxygen isotope composition (?18O) of planktonic foraminifera can be used as proxies for the latitudinal position of the Equatorial Front. Specifically, this study compares the ?18O values of eight species of planktonic foraminifera (Globigerinoides ruber sensu stricto (ss) and sensu lato (sl), Globigerinoides sacculifer, Globigerinoides triloba, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii menardii, Globorotalia menardii cultrata and Globorotalia tumida) with the seasonal hydrography of the region, and evaluates the application of each species or combination of species for paleoceanographic reconstructions. The results are consistent with sea surface temperature and water column stratification patterns. We found that in samples north of 1°N, the Rc/d values tend to be higher and d18O values of G. ruber, G. sacculifer, G. triloba, P. obliquiloculata, N. dutertrei, and G. menardii cultrata tend to be lower than those from samples located south of 1°N. We suggest that the combined use of Rc/d and the d18O difference between G. ruber and G. tumida or between P. obliquiloculata and G. tumida are the most suitable tools for reconstructing changes in the latitudinal position of the Equatorial Front and changes in the thermal stratification of the upper water column in the eastern tropical Pacific.
Resumo:
The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.