310 resultados para Primulaceae.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen records from perennially frozen sequences provide vegetation and climate reconstruction for the last 48,000 14C years in the central part of Taymyr Peninsula. Open larch forest with Alnus fruticosa and Betula nana grew during the Kargin (Middle Weichselian) Interstade, ca. 48,000-25,000 14C yr B.P. The climate was generally warmer and wetter than today. Open steppe-like communities with Artemisia, Poaceae, Asteraceae, and herb tundralike communities with dwarf Betula and Salix dominated during the Sartan (Late Weichselian) Stade, ca. 24,000-10,300 14C yr B.P. The statistical information method used for climate reconstruction shows that the coldest climate was ca. 20,000-17,000 14C yr B.P. A warming (Allerød Interstade?) with mean July temperature ca. 1.5°C warmer than today occurred ca. 12,000 14C yr B.P. The following cooling with temperatures about 3°-4°C cooler than present and precipitation about 100 mm lower corresponds well with the Younger Dryas Stade. Tundra-steppe vegetation changed to Betula nana-Alnus fruticosa shrub tundra ca. 10,000 14C yr B.P. Larch appeared in the area ca. 9400 14C yr B.P. and disappeared after 2900 14C yr B.P. Cooling events ca. 10,500, 9600, and 8200 14C yr B.P. characterized the first half of the Holocene. A significant warming occurred ca. 8500 14C yr B.P., but the Holocene temperature maximum was at about 6000-4500 14C yr B.P. The vegetation cover approximated modern conditions ca. 2800 14C yr B.P. Late Holocene warming events occurred at ca. 3500, 2000, and 1000 14C yr B.P. A cooling (Little Ice Age?) took place between 500 and 200 14C yr ago.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pollen profile from the highest known peatbog in the Alps is presented. The peatbog started to grow about 8000 years ago and over the last 5000 years. The influence of man on the vegetation is documented. Before the beginning of the bronze age pasturing started.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New pollen and radiocarbon data from an 8.6-m coastal section, Cape Shpindler (69°43' N; 62°48' E), Yugorski Peninsula, document the latest Pleistocene and Holocene environmental history of this low Arctic region. Twelve AMS 14C dates indicate that the deposits accumulated since about 13,000 until 2000 radiocarbon years BP. A thermokarst lake formed ca. 13,000-12,800 years BP, when scarce arctic tundra vegetation dominated the area. By 12,500 years BP, a shallow lake existed at the site, and Arctic tundra with Poaceae, Cyperaceae, Salix, Saxifraga, and Artemisia dominated nearby vegetation. Climate was colder than today. Betula nana became dominant during the Early Preboreal period about 9500 years BP, responding to a warm event, which was one of the warmest during the Holocene. Decline in B. nana and Salix after 9500 years BP reflects a brief event of Preboreal cooling. A subsequent increase in Betula and Alnus fruticosa pollen percentages reflects amelioration of environmental conditions at the end of Preboreal period (ca. 9300 years BP). A decline in arboreal taxa later, with a dramatic increase in herb taxa, reflects a short cold event at about 9200 years BP. The pollen data reflect a northward movement of tree birch, peaking at the middle Boreal period, around 8500 years BP. Open Betula forest existed on the Kara Sea coast of the Yugorski Peninsula during the Atlantic period (8000-4500 years BP), indicating that climate was significantly warmer than today. Deteriorating climate around the Atlantic-Subboreal boundary (ca. 4500 years BP) is recorded by a decline in Betula percentages. Sedimentation slowed at the site, and processes of denudation and/or soil formation started at the beginning of the Subatlantic period, when vegetation cover on Yugorski Peninsula shifted to near-modern assemblages.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: