373 resultados para Climatic changes
Resumo:
Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminiferal records of a 3.5 m long gravity core from Ameralik Fjord, southern West Greenland, is used for reconstructing late-Holocene environmental changes in this area. The changes are linked to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core records the last 4400 years and covers the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4 3.2 ka BP) is characterized by high accumulation rates of fine (silty) sediments related to strong meltwater discharge from the Inland Ice. The HTM benthic foraminiferal fauna demonstrates the presence of well-ventilated, saline bottom water originating from inflow of subsurface West Greenland Current water of Atlantic (Irminger Sea) origin. The hydrographic conditions were further characterized by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions with a decreased meltwater discharge and more widespread sea-ice cover in the fjord.
Resumo:
A statistical analysis ol 15 deep sea cores in the eastern North Atlantic off NW Africa revealed the typical fluctuation pattern of distinct species proups as has been described from various parts of the world ocean. Only the "WBF-group" appears to be correlated with global climatic changes, i.e. warmer periods as the Eemian and the Atlanticum. A partly antagonistic "High Productivity group" (HPR-group) is in general not linked with global changes but times of increased fertility in the surface water and the resulting flux of organic matter reaching the bottom. The groups were extracted from cluster analysis of more than 150 surface samples (HPR-group) and a factor analysis of selected cores (WBF-group). In contrast to previous studies the observed fluctuations can not be explained by drastic changes in bottom water masses, but by the pulsation of a distinct "High Productivity Patch" in space and time. At present, this patch is located below the well known upwelling area between 22° and 12° northern latitude. It shifted to the north (up to 27 °N) during the latest glacial period ( 18 ky), indicating an equivalent shift of upwelling productivity caused by advection of nutrient rich upwelling SACW-waters, probably during most of isotopic stages 2 and 3.
Resumo:
The areas of marine pollen deposition are related to the pollen source areas by aeolian and fluvial transport regimes, whereas wind transport is much more important than river transport. Pollen distribution patterns of Pinus, Artemisia, Chenopodiaceae-Amaranthaceae, and Asteraceae Tubuliflorae trace atmospheric transport by the northeast trades. Pollen transport by the African Easterly Jet is reflected in the pollen distribution patterns of Chenopodiaceae-Amaranthaceae, Asteraceae Tubuliflorae, and Mitracarpus. Grass pollen distribution registers the latitudinal extension of Sahel, savannas and dry open forests. Marine pollen distribution patterns of Combretaceae-Melastomataceae, Alchornea, and Elaeis reflect the extension of wooded grasslands and transitional forests. Pollen from the Guinean-Congolian/Zambezian forest and from the Sudanian/Guinean vegetation zones mark the northernmost extension of the tropical rain forest. Rhizophora pollen in marine sediments traces the distribution of mangrove swamps. Only near the continent, pollen of Rhizophora, Mitracarpus, Chenopodiaceae-Amaranthaceae, and pollen from the Sudanian and Guinean vegetation zones are transported by the Upwelling Under Current and the Equatorial Under Current, where those currents act as bottom currents. The distribution of pollen in marine sediments, reflecting the position of major climatic zones (desert, dry tropics, humid tropics), can be used in tracing climatic changes in the past.
Resumo:
The late Eocene through earliest Oligocene (40-32 Ma) spans a major transition from greenhouse to icehouse climate, with net cooling and expansion of Antarctic glaciation shortly after the Eocene/Oligocene (E/O) boundary. We investigated the response of the oceanic biosphere to these changes by reconstructing barite and CaCO3 accumulation rates in sediments from the equatorial and North Pacific Ocean. These data allow us to evaluate temporal and geographical variability in export production and CaCO3 preservation. Barite accumulation rates were on average higher in the warmer late Eocene than in the colder early Oligocene, but cool periods within the Eocene were characterized by peaks in both barite and CaCO3 accumulation in the equatorial region. We infer that climatic changes not only affected deep ocean ventilation and chemistry, but also had profound effects on surface water characteristics influencing export productivity. The ratio of CaCO3 to barite accumulation rates, representing the ratio of particulate inorganic C accumulation to Corg export, increased dramatically at the E/O boundary. This suggests that long-term drawdown of atmospheric CO2 due to organic carbon deposition to the seafloor decreased, potentially offsetting decreasing pCO2 levels and associated cooling. The relatively larger increase in CaCO3 accumulation compared to export production at the E/O suggests that the permanent deepening of the calcite compensation depth (CCD) at that time stems primarily from changes in deep water chemistry and not from increased carbonate production.
Resumo:
To reconstruct paleoceanographic changes in the eastern Mediterranean during the last 330,000 years, we studied benthic foraminifera in a piston core from the Ionian Sea. The fauna exhibits large fluctuations in foraminiferal number, diversity, and species composition. Interglacials are characterized by low foraminiferal number and diversity indicating oligotrophic conditions. Directly below or above interglacial sapropels, increased numbers of low-oxygen-tolerant species indicate a strong reduction of deep water circulation. Glacials are characterized by increased foraminiferal number and diversity and faunas that are dominated by shallow infaunal species indicating mesotrophic conditions. Around glacial sapropel S6 very high foraminiferal numbers and the dominance of shallow and deep infaunal species suggest enhanced organic matter fluxes. These faunal results provide information about changes in the African and North Atlantic climate systems (monsoon and westerlies) controlling the humidity and wind stress in the Mediterranean region.
Resumo:
Bulk mineralogy of the terrigenous fraction of 99 samples from ODP Site 722 on the Owen Ridge, western Arabian Sea, has been determined by x-ray diffraction, using an internal standard method. The sampling interval, approximately 4.3 k.y., provides a detailed mineralogic record for the past 500 k.y. Previous studies have identified important modern continental sediment sources and the mineral assemblages presently derived from each. These studies have also demonstrated that most of this material is supplied by southwest and northwest winds during the summer monsoon. A variety of marine and terrestrial records and general circulation model (GCM) simulations have indicated the importance of monsoonal circulation during the Pleistocene and Holocene and have demonstrated increased aridity during glacial times and increased humidity during inter glacials. The mineralogic data generated here were used to investigate variations in source area weathering conditions during these environmental changes. Terrigenous minerals present include smectite, illite, palygorskite, kaolinite, chlorite, quartz, plagioclase feldspar, and dolomite. This mineralogy is consistent with the compositions of source areas presently supplying sediment to the Arabian Sea. An R-mode factor analysis has identified four mineral assemblages present throughout the past 500 k.y.: quartz/chlorite/dolomite (Factor 1), kaolinite/plagioclase/illite (Factor 2), smectite (Factor 3), and palygorskite/dolomite (Factor 4). Chlorite, illite, and palygorskite are extremely susceptible to chemical weathering, and a spectral comparison of these factors with the eolian mass accumulation rate (MAR) record from Hole 722B (an index of dust source area aridity) indicates that Factors 1, 2, and 4 are directly related to changes in aridity. Because of these characteristics, Factors 1,2, and 4 are interpreted to originate from arid source regions. Factor 3 is interpreted to record more humid source conditions. Time-series of scores for the four factors are dominated by short-term (10-100 k.y.) variability, and do not correlate well to glacial/interglacial fluctuations in the time domain. These characteristics suggest that local climatic shifts were complex, and that equilibrium weathering assemblages did not develop immediately after climatic change. Spectral analysis of factor scores identifies peaks at or near the primary Milankovitch frequencies for all factors. Factor 1 (quartz/chlorite/dolomite), Factor 2 (kaolinite/plagioclase/illite), and Factor 4 (illite/palygorskite) are coherent and in phase with the MAR record over the 23, 41, and 100 k.y. bands, respectively. The reasons for coherency at single Milankovitch frequencies are not known, but may include differences in the susceptibilities of minerals to varying time scales of weathering and/or preferential development of suitable continental source environments by climatic changes at the various Milankovitch frequencies.
Resumo:
Oxygen isotope data are compared with relative abundances of selected planktic foraminifera through a ca. 15 m interval at DSDP Site 593 (Tasman Sea, southwest Pacific, 40°S) in which there are prominent changes in population sizes, as well as several evolutionary events. We focus on the relation between faunal and climatic histories. The base of early Miocene oxygen isotope Zone Mi1b (uppermost planktic foraminiferal Zone N.6) is identified from closesampled (c. 14 kyr) isotope records of Globigerina woodi and Cibicides kullenbergi. Chronostratigraphic interpolations, using the first occurrences of Globorotalia praescitula, G. mimea and Praeorbulina curva give an age estimate of ca. 18.4 Ma (cf. 18.1 -18.3 Ma for the base of the zone at DSDP Site 608 (type level, north Atlantic, 43°N) ). Another significant benthic delta18O enrichment event, informally designated as the base of zone "Mi1c", is identified 10 m higher in the sequence at ca. 17.8 Ma. Populations of Globoquadriau dehiscens and Globigerinoides trilobus (inferred to be near the southern margin of their distributions) either reduced considerably or withdrew, particularly in the vicinity of zone "Mi1c". A bioseries linking Globorotalia incognita with G. zealandica developed following the benthic delta18O enrichment spike at the base of Zone Mi1b; the latter species became extinct (at least regionally) just above the base of zone "Mi1c". In contrast, the apparently opportunistic Globorotlia praescitula increased dramatically in abundance at this time; there were also transformations in its architecture, leading to the evolutionary appearance of G. miozea. While planktic foraminifera abundances often do not closely covary with the detailed isotope records and tend to be more stable through time, the near coincidence of evolutionary and biogeographic events with isotopic events suggests at least indirect adaptive responses to climatic changes. Early Miocene middle-latitude planktic foraminiferal evolution, biogeography, and biostratigraphy, may be intimately connected with climatic history.
Resumo:
Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. We investigate the temporal and spatial dynamics of a 7.5 km**2, partly drained thermokarst basin (alas) using field investigations, remote sensing, Geographic Information Systems (GIS), and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby creating a > 20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is characterized by alternating stages of lower and higher thermokarst intensity within the alas that were mainly controlled by local hydrological and relief conditions and accompanied by permafrost aggradation and degradation. It included diverse concurrent processes like lake expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of drainage channels and a pingo, which occurred in different parts of the alas. This more dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. However, on the regional scale, the changes during the second evolutionary phase after drainage of the initial thermokarst lakes were less intense than the early Holocene extensive thermokarst development in East Siberian coastal lowlands as a result of a significant regional change to warmer and wetter climate conditions.
Resumo:
Pleistocene summer sea-surface temperatures (SSST) have been reconstructed on a composite core section recovered in the Subantarctic Zone of the Southern Ocean from planktonic foraminifers applying the Modern Analog Technique. The composite consists of Core PS2489-2 and the sections recovered at ODP Site 1090, and documents the last 1.83 Ma. Three distinct climatic periods can be identified that mirror the Pleistocene development of the Southern Ocean hydrography. Cold climatic conditions prevailed at 43°S during glacial as well as during interglacial periods during the early Pleistocene (1.83-0.87 Ma), indicating a northward shift of isotherms that characterize the present-day Polar Front Zone by about 7° of latitude. Evidence shows a strong linkage between Southern Ocean and low latitude climate during that interval time. Between the Mid-Pleistocene Revolution (ca. 0.9 Ma) and the Mid-Brunhes Event (ca. 0.4 Ma), we observe higher amplitude fluctuations in the SSST between glacial and interglacial periods, corresponding to the temperature range between the present Polar Front and Subantarctic Front. These climatic variations have been related to changes in the northern hemisphere ice sheets. The past 0.4 Ma are characterized by strong SSST variations, of up to 8°C, between glacials and interglacials. Only during the climatic optima (stages 11.3, 9.3, 7.5, 7.1, 5.5, and the early Holocene), SSST exceeded present SSST at the core locality (10.2°C). Although the carbonate dissolution record exhibits high variability during the Pleistocene, it can be shown that SSST estimates were not significantly biased. The Mid-Brunhes dissolution cycle as well as the Mid-Pleistocene enhanced carbonate preservation appear to belong to a global long-term variability in carbonate preservation.
Resumo:
Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.