300 resultados para Carter Seamount
Resumo:
Manganese nodules made of radiating rods of well crystallized birnessite were sampled at 8 degree 481.2'N, 103 degree 53.8W, 1875 m below sea level by a dredge that also collected hyaloclastite and basaltic talus. The nodule field is on the floor of a caldera within a young tholeiitic seamount and was discovered and photographed during a deep-two survey. It is interpreted as a brecciated hydrothermal deposit, crystallized from an amorphous manganese oxide precipitate that formed when seawater-based hydrothermal fluids mixed with oxidized seawater. The nodules and surrounding igneous rocks have subsequently been encrusted with hydrogenous ferromanganese oxides.
Resumo:
The De Gerlache Seamounts are two topographic highs in the Bellingshausen Sea, southeastern Pacific. Petrological and geochemical studies together with K-Ar age determinations were carried out on four dredged basalt samples collected during a RV Polarstern expedition (ANT-XII/4) in 1995. Minor and trace element composition suggest alkaline basalt compositions. Compared to alkaline basalts of adjacent West Antarctica (the Jones Mountains) and of Peter I Island, the samples have lower mg-numbers, lower Ni and Cr contents and lower high field-strength elements (HFSE)/Nb and large-ion lithophile elements (LILE)/HFSE ratios. Three of the four samples have low K, Rb, and Cs concentrations relative to alkaline basalts. The K-depletion and other elemental concentrations may be explained by 1.1% melting of amphibole bearing mantle material. Additionally, low Rb and Ba values suggest low concentrations of these elements in the mantle source. K-Ar age determinations yield Miocene ages (20-23 Ma) that are similar in age to other alkaline basalts of West Antarctica (Thurston Island, the Jones Mountains, Antarctic Peninsula) and the suggested timing of onset of Peter I Island volcanism (~10-20 Ma). The occurrence of the DGS and Peter I Island volcanism along an older but reactivated tectonic lineation suggests that the extrusions exploited a zone of pre-existing lithospheric weakness. The alkaline nature and age of the DGS basalts support the assumption of plume activity in the Bellingshausen Sea.
Resumo:
Petrological, mineralogical and chemical investigations of marine manganese nodules from the West Pacific revealed the intimate relation between the chemical and mineral compositions and the remarkable preferential partitioning of metal elements in the ferromanganese minerals. The microscopic observations of textures of manganese nodules tell the growth history of manganese nodules and the formation conditions of ferromanganese minerals. Chemical compositions of nodules from Komahashi-Daini Seamount are very similar to those of the nodules from marginal banks and seamounts. Compositional variations in the bulk composition of nodules collected from the same dredge haul are considerably small, suggesting the similarity of the growth history of individual nodules, although the contents of metal elements vary remarkably from layer to layer in a single nodule.
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Resumo:
Seamounts are very effectively studied by deep-sea photography. Each photograph can be considered as a sample point when used in connection with bathymetric surveys, dredge samples, and cores, thus making it possible to delineate and map geologic and biologic zones on a seamount. Seamounts transcend through a great depth range and are characterized by minimal sedimentation which results in exciting and photogenic differences of environment over a short distance, as typified by our studies of Great Meteor and the New England Seamounts.
Resumo:
During Leg ANT-XXIII/9 on 2007-04-04 the German research vessel POLARSTERN mapped a significant bathymetric feature with its swath sonar system in the area of the Indian Ridge in the Southern Indian Ocean. The feature is a vulcano located 800 km northwest of Crozet Island. The vulcano with a crater has an absolute height of 1370 m, extending from 3100 m mean depth of the surrounding sea floor to a depth of 1730 m at the top of the crater rim. The crater has a depth of about 135 m. Due to the fact, that the feature was discovered just a month after the fourth International Polar Year (IPY) 2007/2009 has started, it was named "IPY Seamount". The undersea feature name proposal was submitted to the International Hydrographic Organisation (IHO) and the Intergovernmental Oceanographic Commission (IOC of UNESCO) on 2007-05-11. The name was officially accepted by the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) at its 20th meeting in July and was added to the GEBCO Gazetteer of UFN.
Resumo:
During the 19th cruise of the research vessel "Meteor" between Madeira and Lisbon 260 strains of aerobic heterotrophic bacteria have been isolated from sediment samples collected from different depths. These strains have been identified mainly as members of the genera Marinovibrio, Pseudomonas, and Bacillus. The majority of bacteria isolated from shallow areas (Josephine Seamount) were sea water media requiring Marinovibrio and Pseudornonas spp. but in sediment samples taken from depths exceeding 1000 m the probably terrestrial sporeforming Bacillus spp. predominated. Further investigations in the same region during the 23rd cruise of the "Meteor" demonstrated that about 30 to 50% of the sporeforming bacteria found in the sediment samples could be isolated from dormant spores in situ. The remaining more than 50 % of sporeformers in the deep sea region examined are believed to be metabolic active cells.
Resumo:
This dataset gives the collecting information of New England Seamount Geodia species from the Yale Peabody Museum. Museum numbers, fixation processing and Genbank accession numbers are also given.