696 resultados para western Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The provenance of ice-rafted debris (IRD) deposited in the North Atlantic before, during, and after Heinrich event 2 has been determined through measuring the lead isotopic composition of single feldspar grains and multiple-grain composites from the larger than 150-µm size fraction, from cores from the eastern and western North Atlantic and from the Labrador Sea. Single-grain analyses are used to identify the specific continental sources of the IRD, whereas composite samples are used to assess the relative IRD contributions from different sources. All single grains from Heinrich layer 2 (H 2) as well as H 2 composites plot along a correlation line on a 207Pb/204Pb versus 206Pb/204Pb diagram characteristic of the Churchill province of the Canadian shield. This is yet another strong piece of evidence that this Heinrich event was dominated by a massive iceberg discharge of the Laurentide ice sheet lobe located over Hudson Bay. In contrast, single grains from the ambient glacial sediment (above and below H 2) have multiple sources: many of them also lie along the correlation line with H 2 grains, but many others have Pb signatures consistent with derivation from the Grenville province and the Appalachian range in North America and possibly from Scandinavia and Greenland. Composites from the ambient sediment generally lie well to the right of the H 2 reference line in agreement with the results of the single-grain analyses. The evidence provided by lead isotopes regarding the dominant role played by the Hudson Bay lobe of the Laurentide ice sheet in the development of the Heinrich events lends support to the binge/purge model advanced by MacAyeal [1993a, b] that invokes trapping of geothermal heat by the base of the icecap and subsequent basal melting as the mechanism that triggered the Heinrich events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid potentiometric method for measuring ionic and total fluorine concentrations in sea water with aid of a fluorine-selective electrode is described and corresponding measurements in the 0-2000 m layer of the western Sargasso Sea and in the Gulf Stream are given. Preparation of samples and performance of measurements are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ~15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (~25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early Cretaceous dinoflagellate cysts were reinvestigated from nine deep-sea sites of the North and Central Atlantic. In general the zonation scheme developed for the western Central Atlantic (Habib, 1977; Habib and Drugg, 1983 ) can also be applied to the eastern Central Atlantic. Comparison with the probabilistic zonation of Gradstein et al. (1992) show, however, that the first occurrences of the important marker species Druggidium apicopaucicure, Druggidium deflandrei, Druggidium rhabdoreticulatum and Odontochitina operculata appear to occur slightly later in the eastern Central Atlantic in respect to nannofossils and benthic foraminifers. Muderongia neocomica has a shorter stratigraphic range in the eastern Central Atlantic than in the western Central Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of diatom species in the Eocene-Oligocene sections of Ocean Drilling Program (ODP) Leg 115 sites and Deep Sea Drilling Project (DSDP) Sites 219 and 236 in the low-latitude Indian Ocean are investigated. Diatoms are generally rare and poorly preserved in the Paleogene sequences we studied. The best-preserved assemblages are found close to ash layers in early Oligocene sediments. The low-latitude diatom zonation established for the Atlantic region by Fenner in 1984 is fully applicable to the Paleogene sequences of the western Indian Ocean. Correlation of the diatom zones to the calcareous nannofossil stratigraphy of the sites places the Coscinodiscus excavatus Zone of Fenner within calcareous nannofossil Subzone CP16b. For the Mascarene Plateau and the Chagos Ridge, the times when the sites studied, together with the areas upslope from them, subsided to below the euphotic zone are deduced from changes in the relative abundance between the group of benthic, shallow-water species and Grammatophora spp. vs. the group of fully planktonic diatom species. The Eocene section of Site 707, on the Mascarene Plateau, is characterized by the occurrence of benthic diatoms (approximately 10% of the diatom assemblage). These allochthonous diatoms must have originated from shallow-water environments around volcanic islands that existed upslope from ODP Site 707 in Eocene times. In Oligocene and younger sediments of Sites 707 and 706, occurrences of benthic diatoms are rare and sporadic and interpreted as reworked from older sediments. This indicates that the area upslope from these two Mascarene Plateau sites had subsided below the euphotic zone by the early Oligocene. Only Grammatophora spp., for which a neritic but not benthic habitat is assumed, continues to be abundant throughout the Oligocene sequences. The area of the Madingley Rise sites (Sites 709-710) and nearby shallower areas subsided below the euphotic zone already in middle Eocene times, as benthic diatoms are almost absent from these Eocene sections. Only sites located on abyssal plains, and which intermittently received turbidite sediments (e.g., Sites 708 and 711), contain occasionally single, benthic diatoms of Oligocene age. The occurrence of the freshwater diatom Aulacosira granulata in a few samples of late early Oligocene and late Oligocene age at Sites 707, 709, and 714 is interpreted as windblown. Their presence indicates at least seasonally arid conditions for these periods in the source areas of eastern Africa and India. Three new species and two new combinations are defined: Chaetoceros asymmetricus Fenner sp. nov.; Hemiaulus gracilis Fenner, sp. nov.; Kozloviella meniscosa Fenner, sp. nov.; Cestodiscus demergitus (Fenner) Fenner comb, nov.; and Rocella princeps (Jouse) Fenner comb. nov.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abyssal agglutinated foraminifers allow biostratigraphic correlation of Upper Cretaceous brown zeolitic claystones in Deep Sea Drilling Project Holes 196A and 198A and Ocean Drilling Program Holes 800A and 801 A. Three agglutinated foraminiferal zones subdivide the strata overlying the Campanian to Cenomanian cherts. The lower zone is characterized by Hormosina gigantea, which is a Campanian zonal marker in the North Atlantic Ocean and western Tethys. A major correlation level, which was observed in all holes studied, is based on the acme of evolute Haplophragmoides spp. This acme zone was observed in Sample 129-801A-6R-CC, about 9 m above the first occurrence of H. gigantea in Sample 129-801A-7R-1, 62-67 cm (approximately middle Campanian). The uppermost zone is characterized by dominant Paratrochamminoides spp. and in some instances common Bolivinopsis parvissimus (late Campanian to Maestrichtian). The available biostratigraphic data for the Upper Cretaceous of Sites 196, 198, 800, and 801 are correlated with the biochronologic framework of the North Atlantic, western Mediterranean, and Carpathians. Additionally, we use quantitative estimates of the diversity and abundance of agglutinated foraminiferal species to monitor general faunal trends with time in the western Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.