31 resultados para thermal spike model
Resumo:
We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.
Resumo:
The geothermal regime of the western margin of the Great Bahama Bank was examined using the bottom hole temperature and thermal conductivity measurements obtained during and after Ocean Drilling Program (ODP) Leg 166. This study focuses on the data from the drilling transect of Sites 1003 through 1007. These data reveal two important observational characteristics. First, temperature vs. cumulative thermal resistance profiles from all the drill sites show significant curvature in the depth range of 40 to 100 mbsf. They tend to be of concave-upward shape. Second, the conductive background heat-flow values for these five drill sites, determined from deep, linear parts of the geothermal profiles, show a systematic variation along the drilling transect. Heat flow is 43-45 mW/m**2 on the seafloor away from the bank and decreases upslope to ~35 mW/m**2. We examine three mechanisms as potential causes for the curved geothermal profiles. They are: (1) a recent increase in sedimentation rate, (2) influx of seawater into shallow sediments, and (3) temporal fluctuation of the bottom water temperature (BWT). Our analysis shows that the first mechanism is negligible. The second mechanism may explain the data from Sites 1004 and 1005. The temperature profile of Site 1006 is most easily explained by the third mechanism. We reconstruct the history of BWT at this site by solving the inverse heat conduction problem. The inversion result indicates gradual warming throughout this century by ~1°C and is agreeable to other hydrographic and climatic data from the western subtropic Atlantic. However, data from Sites 1003 and 1007 do not seem to show such trends. Therefore, none of the three mechanisms tested here explain the observations from all the drill sites. As for the lateral variation of the background heat flow along the drill transect, we believe that much of it is caused by the thermal effect of the topographic variation. We model this effect by obtaining a two-dimensional analytical solution. The model suggests that the background heat flow of this area is ~43 mW/m**2, a value similar to the background heat flow determined for the Gulf of Mexico in the opposite side of the Florida carbonate platform.
Resumo:
In the deep-sea, the Paleocene-Eocene Thermal Maximum (PETM) is often marked by clay-rich condensed intervals caused by dissolution of carbonate sediments, capped by a carbonate-rich interval. Constraining the duration of both the dissolution and subsequent cap-carbonate intervals is essential to computing marine carbon fluxes and thus testing hypotheses for the origin of this event. To this end, we provide new high-resolution helium isotope records spanning the Paleocene-Eocene boundary at ODP Site 1266 in the South Atlantic. The extraterrestrial 3He, 3HeET, concentrations replicate trends observed at ODP Site 690 by Farley and Eltgroth (2003, doi:10.1016/S0012-821X(03)00017-7). By assuming a constant flux of 3HeET we constrain relative changes in accumulation rates of sediment across the PETM and construct a new age model for the event. In this new chronology the zero carbonate layer represents 35 kyr, some of which reflects clay produced by dissolution of Paleocene (pre-PETM) sediments. Above this layer, carbonate concentrations increase for ~165 kyr and remain higher than in the latest Paleocene until 234 +48/-34 kyr above the base of the clay. The new chronology indicates that minimum d13C values persisted for a maximum of 134 +27/-19 kyr and the inflection point previously chosen to designate the end of the CIE recovery occurs at 217 +44/-31 kyr. This allocation of time differs from that of the cycle-based age model of Röhl et al. (2007, doi:10.1029/2007GC001784) in that it assigns more time to the clay layer followed by a more gradual recovery of carbonate-rich sedimentation. The new model also suggests a longer sustained d13C excursion followed by a more rapid recovery to pre-PETM d13C values. These differences have important implications for constraining the source(s) of carbon and mechanisms for its subsequent sequestration, favoring models that include a sustained release
Resumo:
A marine sediment core from Vaigat in Disko Bugt, West Greenland, has been analysed in terms of lithology, dinoflagellate cysts and foraminifera in order to evaluate the influence of oceanographic variability on West Greenland glacier stability. The data show that during the past 5200 years the Atlantic foraminiferal abundance in the subsurface waters of the West Greenland Current (WGC) episodically increased, indicating periods of increases in the inflow of subsurface warm Atlantic water at 2000 - 1500 cal. yr BP and 1300 cal. yr BP as well as periods of less pronounced increased bottom-water temperatures around 4700 - 4000 cal. yr BP, 3100 - 2800, 2600, 1000 - 800, 500 - 400, and at 200 cal. yr. The sedimentological and dinoflagellate cyst data indicate that these episodes with enhanced advection of Irminger Sea-derived waters are accompanied by increased iceberg rafting, which we link to increased iceberg calving in relation to destabilization of the Jakobshavn Isbrae. The long-term trend in the data documents the end of a late-Holocene Thermal Maximum between 5200 and 4300 cal. yr BP and a final onset of the Neoglaciation at 3500 cal. yr BP. Increased responses of the iceberg rafting after 3500 cal. yr BP, reflects a westward/seaward advance of the glacier margin in relation to onset of Neoglaciation and a development of the glacier into a floating tongue after 2000 cal. yr BP. A comparison of our record with a record from the eastern North Atlantic indicates that a NAO-like anomaly pattern between subsurface waters in West Greenland and atmospheric temperature in the Eastern North Atlantic may have been operating during most of the late Holocene. However, during the past 1000 years the NAO signal may have weakened as some other mode of climate variability overprints the anti-phase climate signal in this region.