18 resultados para multiple data sources


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a new high-resolution elevation model of Greenland, including the ice sheet as well as the ice free regions, is presented. It is the first published full coverage model, computed with an average resolution of 2 km and providing an unprecedented degree of detail. The topography is modeled from a wide selection of data sources, including satellite radar altimetry from Geosat and ERS 1, airborne radar altimetry and airborne laser altimetry over the ice sheet, and photogrammetric and manual map scannings in the ice free region. The ice sheet model accuracy is evaluated by omitting airborne laser data from the analysis and treating them as ground truth observations. The mean accuracy of the ice sheet elevations is estimated to be 12-13 m, and it is found that on surfaces of a slope between 0.2° and 0.8°, corresponding to approximately 50% of the ice sheet, the model presents a 40% improvement over models based on satellite altimetry alone. On coastal bedrock, the model is compared with stereo triangulated reference points, and it is found that the model accuracy is of the order of 25-35 m in areas covered by stereo photogrammetry scannings and between 200 and 250 m elsewhere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiversity citizen science projects are growing in number, size, and scope, and are gaining recognition as valuable data sources that build public engagement. Yet publication rates indicate that citizen science is still infrequently used as a primary tool for conservation research and the causes of this apparent disconnect have not been quantitatively evaluated. To uncover the barriers to the use of citizen science as a research tool, we surveyed professional biodiversity scientists (n = 423) and citizen science project managers (n = 125). We conducted three analyses using non-parametric recursive modeling (random forest), using questions that addressed: scientists' perceptions and preferences regarding citizen science, scientists' requirements for their own data, and the actual practices of citizen science projects. For all three analyses we identified the most important factors that influence the probability of publication using citizen science data. Four general barriers emerged: a narrow awareness among scientists of citizen science projects that match their needs; the fact that not all biodiversity science is well-suited for citizen science; inconsistency in data quality across citizen science projects; and bias among scientists for certain data sources (institutions and ages/education levels of data collectors). Notably, we find limited evidence to suggest a relationship between citizen science projects that satisfy scientists' biases and data quality or probability of publication. These results illuminate the need for greater visibility of citizen science practices with respect to the requirements of biodiversity science and show that addressing bias among scientists could improve application of citizen science in conservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for upper and lower ice surface topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The global 1-minute dataset (RTopo-1 Version 1.0.5) has been split into two netCDF files. The first contains digital maps for global bedrock topography, ice bottom topography, and surface elevation. The second contains the auxiliary maps for data sources and the surface type mask. A regional subset that covers all variables for the region south of 50 deg S is also available in netCDF format. Datasets for the locations of grounding and coast lines are provided in ASCII format.