48 resultados para lawyers and dispute resolution
Resumo:
Peat plateaus are widespread at high northern latitudes and are important soil organic carbon reservoirs. A warming climate can cause either increased ground subsidence (thermokarst) resulting in lake formation or increased drainage as the permafrost thaws. A better understanding of spatiotemporal variations in these landforms in relation to climate change is important for predicting the future thawing permafrost carbon feedback. In this study, dynamics in thermokarst lake extent during the last 35-50 years has been quantified through time series analysis of aerial photographs and high-resolution satellite images (IKONOS/QuickBird) in three peat plateau complexes, spread out across the northern circumpolar region along a climatic and permafrost gradient. From the mid-1970s until the mid-2000s there has been an increase in mean annual air temperature, winter precipitation, and ground temperature in all three study areas. The two peat plateaus located in the continuous and discontinuous permafrost zones, respectively, where mean annual air temperatures are below -5°C and ground temperatures are -2°C or colder, have experienced small changes in thermokarst lake extent. In the peat plateau located in the sporadic permafrost zone where the mean annual air temperature is around -3°C, and the ground temperature is close to 0°C, lake drainage and infilling with fen vegetation has been extensive and many new thermokarst lakes have formed. In a future progressively warmer and wetter climate permafrost degradation can cause significant impacts on landscape composition and greenhouse gas exchange also in areas with extensive peat plateaus, which presently still experience stable permafrost conditions.
Resumo:
The accumulation and distribution of the 2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal d2H variations in the firn. In addition, 3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the d2H values range from about -195 per mil at the ice edge to -250 per mil at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kg/m**2/a. The d2H values of the near-surface firn and the 10 m firn temperatures (Theta) at individual sites are very well correlated: ddelta2H/dTheta=(10.3±0.6)per mil /K; r = 0.97. The d2H profiles of the two ice cores B13 and B15 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in 2H in the firn upstream of the drill sites. Comparison with tlie surface data indicates that the ice above 142 m in core B15 and above 137 m in core B13 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.
Resumo:
The Helgoland mud area in the German Bight is one of the very few sediment depocenters in the North Sea. Despite the shallowness of the setting (<30 m water depth), its topmost sediments provide a continuous and high-resolution record allowing the reconstruction of regional paleoenvironmental conditions for the time since ~400 a.d. The record reveals a marked shift in sedimentation around 1250 a.d., when average sedimentation rates drop from >13 to ~1.6 mm/year. Among a number of major environmental changes in this region during the Middle Ages, the disintegration of the island of Helgoland appears to be the most likely factor which caused the very high sedimentation rates prior to 1250 a.d. According to historical maps, Helgoland used to be substantially bigger at around 800 a.d. than today. After the shift in sedimentation, a continuous and highly resolved paleoenvironmental record reflects natural events, such as regional storm-flood activity, as well as human impacts at work at local to global scales, on sedimentation in the Helgoland mud area.
Resumo:
A selection of MeO-BDE and BDE congeners were analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography. The analysis was performed using both low resolution and high resolution GC-MS. MeO-PBDE concentrations relative to total PBDE concentrations varied greatly between sampling periods and species. The highest MeO-PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, often exceeding the concentration of the most abundant PBDE, BDE-47. The lowest MeO-PBDE levels were found in fin whales and ringed seals. The main MeO-BDE congeners were 6-MeO-BDE47 and 2'-MeO-BDE68. A weak correlation only between BDE47 and its methoxylated analog 6-MeO-BDE47 was found and is indicative of a natural source for MeO-PBDEs.
Resumo:
The evolution of productivity, redox conditions, temperature, and ventilation during the deposition of an Aegean sapropel (S1) is independently constrained using bulk sediment composition and high-resolution single specimen benthic foraminiferal trace metal and stable isotope data. The occurrence of benthic foraminifer, Hoeglundina elegans (H. elegans), through a shallow water (260 m) sapropel, permits for the first time a comparison between dissolved and particulate concentrations of Ba and Mn and the construction of a Mg/Ca-based temperature record through sapropel S1. The simultaneous increase in sedimentary Ba and incorporated Ba in foraminiferal test carbonate, (Ba/Ca)H. elegans, points to a close coupling between Ba cycling and export productivity. During sapropel deposition, sedimentary Mn content ((Mn/Al)sed) is reduced, corresponding to enhanced Mn2+ mobilization from sedimentary Mn oxides under suboxic conditions. The consequently elevated dissolved Mn2+ concentrations are reflected in enhanced (Mn/Ca)H. elegans levels. The magnitude and duration of the sapropel interruption and other short-term cooling events are constrained using Mg/Ca thermometry. Based on integrating productivity and ventilation records with the temperature record, we propose a two-mode hysteresis model for sapropel formation.
Resumo:
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12-1.01 ppb (0.06-0.59) 230Th, 0.51-1.98 ppm (0.43-1.40) 232Th, 0.13-0.80 ppb (0.09-0.49) 234U, and 1.95-13.47 ppm (1.66-8.24) 238U. Both nodules have average growth rates of ~110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The 234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected 234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.
Resumo:
The paleoenvironmental conditions through MIS 15-9 at the Mediterranean Ocean Drilling Program (ODP) Site 975 were interpreted by high resolution study of calcareous plankton assemblages compared with available d18O and d13C records and high resolution paleoclimate proxies from the Atlantic Ocean. Sea Surface Temperatures (SSTs) have been estimated from planktonic foraminiferal assemblages using the artificial neural networks method. Calcareous plankton varied dominantly on a glacial-interglacial scale as testified by the SST record, foraminiferal diversity, total coccolith abundance and changes in warm-water calcareous nannofossil taxa. A general increase in foraminiferal diversity and of total coccolith abundance is observed during interglacials. Warmest SSTs are reached during MIS 11, while MIS 12 and MIS 10 represent the coldest intervals of the studied record. During MIS 12, one of the most extreme glacials of the last million years, occurrence of Globorotalia inflata and of neogloboquadrinids indicates a shoaling of the interface between Atlantic inflowing and Mediterranean outflowing waters. Among calcareous nannofossils the distribution of Gephyrocapsa margereli-G. muellerae > 4 µm also supports a reduced Atlantic-Mediterranean exchange during MIS 12. Superimposed on glacial-interglacial variability, six short-terms coolings are recognized during MIS 12 and 10, which appear comparable in their distribution and amplitude to the Heinrich - type events documented in the Atlantic Ocean in the same interval. During these H-type events, N. pachyderma (s) and G. margereli-G. muellerae > 4 µm increase as a response to the enhanced inflow of cold Atlantic water into the Mediterranean via the Strait of Gibraltar. Mediterranean surface water hydrography appears to have been most severely affected at Termination V during the H-type event Ht4, possibly as a response to a large volume of Atlantic meltwater inflow via the Strait of Gibraltar and/or to freshwater/terrigenous input deriving from local mountain glaciers. Three additional SST coolings are recorded through MIS 14-16, but these are not well correlated with Heinrich - type events documented in the Atlantic Ocean in the same interval; during these cooling episodes only the subpolar Turborotalita quinqueloba increases. These results highlight the sensitive response of the Mediterranean basin to millennial-scale climate variations related to Northern Hemisphere ice-sheet instability and support the hypothesis that the tight connection between high latitude climate dynamics and Mediterranean sea surface water features can be traced through the Middle Pleistocene.
Resumo:
With the aim of analyzing the complex physical and biogeochemical interactions at high temporal and spatial resolution in the complex estuarine waters of Alfacs Bay, a beam attenuation-based approach was used as optical proxy of different biogeochemical variables. Thus, the dataset contains the attenuation proxies as well as laboratory results from the analysis of water samples, which were used to validate our approach. In addition, the major physical forcing in the Bay was also measured.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.
Resumo:
Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.
Resumo:
A succession of 23 sub-millimetre to maximum 12-mm-thick, mostly flood-triggered detrital layers, deposited between 1976 and 2005, was analysed in 12 varved surface sediment cores from meso-scale peri-alpine Lake Mondsee applying microfacies and high-resolution micro X-ray fluorescence analyses. Detailed intrabasin comparison of these layers enabled identification of (i) different source areas of detrital sediments, (ii) flood-triggered sediment flux and local erosion events, and (iii) seasonal differences of suspended flood sediment distribution within the lake basin. Additional calibration of the detrital layer record with river discharge and precipitation data reveals different empirical thresholds for flood layer deposition for different parts of the basin. At proximal locations detrital layer deposition requires floods exceeding a daily discharge of 40 m**3/s, whereas at a location 2 km more distal an hourly discharge of 80 m**3/s and at least 2 days of discharge above 40 m**3/s are necessary. Furthermore, we observe a better correlation between layer thickness and flood amplitude in the depocentre than in distal and proximal areas of the basin. Although our results are partly site-specific, the applied dual calibration approach is suitable to precisely decipher flood layer formation processes and, thereby, improve the interpretation of long flood time series from lake sediments.
Resumo:
Research on sediments recovered during Ocean Drilling Leg 160 has concentrated on two issues: the first concerned the stratigraphy of sapropel formation, the second was oriented to clarify specific processes that explain sapropel origin. Progress has been made in the construction of stratigraphic composites out of sedimentary sequences from individual holes at each of the palaeoceanographic sites. On the composites, initial work has resulted in the establishment of high-resolution and intermediate-resolution stratigraphies for three sites (963, 964, 967); correlation of sedimentary cycles to astronomical (insolation) cycles extends the stratigraphies to Sites 969 and 966. The sapropel occurrences in the marine and land sequences over the entire Eastern Mediterranean are correlated; with the resolution that can be obtained from isotope studies, groups of sapropels occurred simultaneously over the entire basin. In detail, however, the temporal and facies patterns of sapropel sequences differ between individual sites and depositional basins. The differences may be related to effects of water depth, diagenesis, and post-depositional tectonic attenuation of sequences. Studies on the geochemistry and facies of sapropels agree that anoxic conditions favoured preservation of organic matter in sapropels, caused the enrichment of trace metals associated with sapropels, and helped to preserve primary sedimentary structures. Besides, all evidence is consistent with elevated fluxes of organic matter and associated elements during sapropel events.
Resumo:
Glacial millennial-scale paleoceanographic changes in the Southeast Pacific and the adjacent Southern Ocean are poorly known due to the scarcity of well-dated and high resolution sediment records. Here we present new surface water records from sediment core MD07-3128 recovered at 53°S off the Pacific entrance of the Strait of Magellan. The alkenone-derived sea surface temperature (SST) record reveals a very strong warming of ca. 8°C over the last Termination and substantial millennial-scale variability in the glacial section largely consistent with our planktonic foraminifera oxygen isotope (d18O) record of Neogloboquadrina pachyderma (sin.). The timing and structure of the Termination and some of the millennial-scale SST fluctuations are very similar to those observed in the well-dated SST record from ODP Site 1233 (41°S) and the temperature record from Drowning Maud Land Antarctic ice core supporting the hemispheric-wide Antarctic timing of SST changes. However, differences in our new SST record are also found including a long-term warming trend over Marine Isotope Stage (MIS) 3 followed by a cooling toward the Last Glacial Maximum (LGM). We suggest that these differences reflect regional cooling related to the proximal location of the southern Patagonian Ice Sheet and related meltwater supply at least during the LGM consistent with the fact that no longer SST cooling trend is observed in ODP Site 1233 or any SST Chilean record. This proximal ice sheet location is documented by generally higher contents of ice rafted debris (IRD) and tetra-unsaturated alkenones, and a slight trend toward lighter planktonic d18O during late MIS 3 and MIS 2.
Resumo:
We investigated two lignite quarries in northern Greece for orbital and suborbital climate variability. Sections Lava and Vegora are located at the southern and northern boundaries of the Ptolemais Basin, a northwest southeast elongated intramontane basin that contains Upper Miocene to Lower Pliocene lacustrine sediments. Sediments show cyclic alterations of marl-rich (light), and coal-rich or clay-rich (dark) strata on a decimeter to meter scale. First, we established low-resolution ground-truth stratigraphy based on paleomagnetics and biostratigraphy. Accordingly, the lower 67 m and 65 m that were investigated in both sections Vegora and Lava, respectively, belong to the Upper Miocene and cover a time period of 6.85 to 6.57 and 6.46 to 5.98 Ma at sedimentation rates of roughly 14 and 22 cm/ka. In order to obtain a robust and high-resolution chronology, we then tuned carbonate minima (low L* values; high magnetic susceptibility values) to insolation minima. Besides the known dominance of orbital precession and eccentricity, we detected a robust hemi-precessional cycle in most parameters, most likely indicative for monsoonal influence on climate. Moreover, the insolation-forced time series indicate a number of millennial-scale frequencies that are statistically significant with dominant periods of 1.5-8 kyr. Evolutionary spectral analysis indicates that millennial-scale climate variability documented for the Ptolemais Basin resembles the one that is preserved in ice-core records of Greenland. Most cycles show durations of several tens of thousands of years before they diminish or cease. This is surprising because the generally argued cause for Late Quaternary millennial-scale variability is associated with the presence of large ice sheets, which cannot be the case for the Upper Miocene. Possible explanations maybe a direct response to solar forcing, an influence on the formation of North Atlantic Deep Water through the outflow of high-salinity water, or an atmospheric link to the North Atlantic Oscillation.