100 resultados para late modern Sweden
Resumo:
Copepod fecal pellets are often degraded at high rates within the upper part of the water column. However, the identity of the degraders and the processes governing the degradation remain unresolved. To identify the pellet degraders we collected water from Øresund (Denmark) approximately every second month from July 2004 to July 2005. These water samples were divided into 5 fractions (<0.2, <2, <20, <100, <200 µm) and total (unfractionated). We determined fecal pellet degradation rate and species composition of the plankton from triplicate incubations of each fraction and a known, added amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Øresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 ± 0.49 d**-1) and minimum (0.52 ± 0.14 d**-1) during late winter. Total pellet removal rate ranged from 22% d**-1 (July 2005) to 87% d**-1 (May). Protozooplankton (dinoflagellates and ciliates) in the size range of 20 to 100 µm were the key degraders of the fecal pellets, contributing from 15 to 53% of the total degradation rate. Free-living in situ bacteria did not affect pellet degradation rate significantly; however, culture-originating bacteria introduced in association with the pellets contributed up to 59% of the total degradation rate. An effect of late-stage copepod nauplii (>200 µm) was indicated, but this was not a dominating degradation process. Mesozooplankton did not contribute significantly to the degradation. However, grazing of mesozooplankton on the pellet degraders impacts pellet degradation rate indirectly. In conclusion, protozooplankton seems to include the key organisms for the recycling of copepod fecal pellets in the water column, both through the microbial loop and, especially, by functioning as an effective 'protozoan filter' for fecal pellets.
Resumo:
Modern scleractinian corals are classical components of marine shallow warm water ecosystems. Their occurrence and diversity patterns in the geological record have been widely used to infer past climates and environmental conditions. Coral skeletal composition data reflecting the nature of the coral environment are often affected by diagenetic alteration. Ghost structures of annual growth rhythms are, however, often well preserved in the transformed skeleton. We show that these relicts represent a valuable source of information on growth conditions of fossil corals. Annual growth bands were measured in massive hemispherical Porites of late Miocene age from the island of Crete (Greece) that were found in patch reefs and level bottom associations of attached mixed clastic environments as well as isolated carbonate environments. The Miocene corals grew slowly, about 2-4 mm/yr, compatible with present-day Porites from high-latitude reefs. Slow annual growth of the Miocene corals is in good agreement with the position of Crete at the margin of the Miocene reef belt. Within a given time slice, extension rates were lowest in level bottom environments and highest in attached inshore reef systems. Because sea surface temperatures (SSTs) can be expected to be uniform within a time slice, spatial variations in extension rates must reflect local variations in light levels (low in the level bottom communities) and nutrients (high in the attached reef systems). During the late Miocene (Tortonian-early Messinian), maximum linear extension rates remained remarkably constant within seven chronostratigraphic units, and if the relationship of SSTs and annual growth rates observed for modern massive Indo-Pacific Porites spp. applies to the Neogene, minimum (winter) SSTs were 20°-21°C. Although our paleoclimatic record has a low resolution, it fits the trends revealed by global data sets. In the near future we expect this new and easy to use Porites thermometer to add important new information to our understanding of Neogene climate.
Resumo:
A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk'37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses were revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.
Resumo:
Sea-ice growth and decay in Antarctica is one of the biggest seasonal changes on Earth, expanding ice cover from 4x10**6 km**2 to a maximum of 19x10**6 km**2 during the austral winter. Analyses of six marine sediment cores from the Scotia Sea, SW Atlantic, yield records of sea-ice migration across the basin since the Lateglacial. The cores span nearly ten degrees of latitude from the modern seasonal sea-ice zone to the modern Polar Front. Surface sediments in the cores comprise predominantly diatomaceous oozes and muddy diatom oozes that reflect Holocene conditions. The cores exhibit similar down-core stratigraphies with decreasing diatom concentrations and increasing magnetic susceptibility from modern through to the Last Glacial Maximum (LGM). Sediments in all cores contain sea-ice diatoms that preserve a signal of changing sea-ice cover and permit reconstruction of past sea-ice dynamics. The sea-ice records presented here are the first to document the position of both the summer and winter sea-ice cover at the Last Glacial Maximum (LGM) in the Scotia Sea. Comparison of the LGM and Holocene sea-ice conditions shows that the average winter sea-ice extent was at least 5° further north at the LGM. Average summer sea-ice extent was south of the most southerly core site at the LGM, and suggests that sea-ice expanded from approximately 61°S to 52°S each season. Our data also suggest that the average summer sea-ice position at the LGM was not the maximum extent of summer sea-ice during the last glacial. Instead, the sediments contain evidence of a pre-LGM maximum extent of summer sea-ice between ab. 30 ka and 22 ka that extended to ab. 59°S, close to the modern average winter sea-ice limit. Based on our reconstruction we propose that the timing of the maximum extent of summer sea-ice and subsequent retreat by 22 ka, could be insolation controlled and that the strong links between sea-ice and bottom water formation provide a potential mechanism by which Southern Hemisphere regional sea-ice dynamics at the LGM could have a global impact and promote deglaciation.
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.
Resumo:
Stable isotope records of coexisting benthic foraminifers Uvigerina spp. and Cibicidoides spp. and planktonic G. ruber (white variety) from Site 724 are used to study the late Pleistocene evolution of surface and intermediate water hydrography (593 m water depth) at the Oman Margin. Glacial-interglacial d18O amplitudes recorded by the benthic foraminifers are reduced when compared to the estimated mean ocean changes of d18Oseawater . Epibenthic d13C remains at its modern level or is increased during glacial times. This implies that Red Sea outflow waters which are enriched in d18Oseawater and d13C (Sum CO2) have been replaced during glacial periods by intermediate waters still positive in d13C (Sum CO2) but more negative in d18Oseawater. Glacial-interglacial amplitudes of the planktonic d18O record exceed those of the mean ocean d18Oseawater variation and imply decreased surface water temperatures (SST) during glacial times. Throughout most of the records these cooling events correlate with enhanced rates of carbon accumulation. However, both negative (colder) SST and positive Corg accumulation rate anomalies do not correlate with potential physical upwelling maxima as inferred from the orbital monsoon index. This is in conflict with the established hypothesis that upwelling in the estern Arabia Sea should be strongest during maxima of the southwest monsoon.
Resumo:
The evolution of planktonic foraminifera during the Late Cretaceous is marked in the Santonian by the disappearance of complex morphotypes (the marginotruncanids), and the contemporary increasing importance and diversification of another group of complex taxa, the globotruncanids. Upper Turonian to lower Campanian planktonic foraminiferal assemblages from Holes 762C and 763B (Ocean Drilling Program, Leg 122, Exmouth Plateau, 47°S palaeolatitude) were studied in detail to evaluate the compositional variations at the genus and species level based on the assumption that, in the Cretaceous oceans as in the modern, any faunal change was associated with changes in the characteristics and the degree of stability of the oceanic surface waters. Three major groups were recognised based on gross morphology, and following the assumption that Cretaceous planktonic foraminifera, although extinct, had life-history strategies comparable to those of modern planktonics: 1 - r-selected opportunists; 2 - k-selected specialists; 3 - r/k intermediate morphotypes which include all genera that display a range of trophic strategies in-between opportunist and specialist taxa. Although planktonic foraminiferal assemblages are characterised by a progressive appearance of complex taxa, this trend is discontinuous. Variation in number of species and specimens within genera has allowed recognition of five discrete intervals each of them reflecting different oceanic conditions based on fluctuations in diversity and abundance of the major morphotypes. Planktonic forms show cyclical fluctuations in diversity and abundance of cold (r-strategists) and warm taxa (k-strategists), perhaps representing alternating phases of unstable conditions (suggesting a weakly stratified upper water column in a mesotrophic environment), and well-stratified surface and near-surface waters (indicating a more oligotrophic environment). Interval 1, middle Turonian to early Coniacian in age, is dominated by the r/k intermediate morphotypes which alternate with r-strategists. These cyclical alternations are used to identify three additional subintervals. Interval 2, aged middle to late Coniacian, is characterised by the increasing number of species and relative abundance of k-strategists. After this maximum diversification the k-strategists show a progressive decrease reaching a minimum value in Interval 3 (early to late Santonian), which corresponds to the extinction of the genus Marginotruncana. In the Interval 4, latest Santonian in age, the k-strategists, represented mainly by the genera Globotruncana, increase again in diversity and abundance. The last Interval 5 (early Campanian) is dominated by juvenile globotruncanids and r-strategists which fluctuate in opposite phase. The positive peak (Interval 2) related to the maximum diversification of warm taxa (k-strategists) in the Coniacian seems to correspond to a warmer episode. It is followed by a marked decrease in the relative abundance of warm taxa (k-strategists crisis) with a minimum in the late Santonian (Interval 3), reflecting a decrease in temperature. Detailed analysis of faunal variations allows the Santonian faunal turnover to be ascribed to a cooling event strong enough to cause the extinction of the marginotruncanids.
Resumo:
We have conducted an integrated study of ice-rafted debris (IRD) and oxygen isotopes (measured on Cibicides, Globigerina bulloides, and Neogloboquadrina pachyderma, using identical samples). We used samples from the early Late Pliocene Gauss Chron from ODP Site 114-704 on the Meteor Rise in the subantarctic South Atlantic. During the early Gauss Chron, the oxygen isotopic ratios are generally up to 0.5?-0.6? less than their respective Holocene values. The lowest values in this record can accommodate a warming of about 2.5°C or a sea-level rise of about 50 m, but not both, and probably result from some warming and a small reduction in global ice volume. Starting with isotope stage MG2 [ 3.23 Ma on the Berggren et al. ( 1985) time scale; 3.38 on the Shackleton et al. ( 1995b) time scale] oxygen-isotopic values generally increase (and oscillate about a Holocene mean). The first significant IRD appears at the same time. There is a subsequent increase in IRD amounts upsection. In order to reach the site, this material must have been transported by large, tabular icebergs derived from Antarctic ice shelves or ice tongues, similar to occasional, large modern icebergs. This combined record suggests strongly that the Antarctic ice sheet was essentially intact; some warming at the drill site is indicated, but not a major reduction in ice-volume on Antarctica.
Resumo:
A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.
Resumo:
Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area (Furo do Chato). Pollen traps were installed in five different areas of the peninsula to study modern pollen deposition. Nine accelerator mass spectrometry radiocarbon dates provide time control and show that sediment deposits accumulated relatively undisturbed. Mangrove vegetation started to develop at different times at the three sites: at 5120 14C yr BP at the CS site, at 2170 14C yr BP at the BDA site and at 1440 14C yr BP at the FDC site. Since mid Holocene times, the mangroves covered even the most elevated area on the peninsula, which is today a salt marsh, suggesting somewhat higher relative sea-levels. The pollen concentration in relatively undisturbed deposits seems to be an indicator for the frequency of inundation. The tidal inundation frequency decreased, probably related to lower sea-levels, during the late Holocene around 1770 14C yr BP at BDA, around 910 14C yr BP at FDC and around 750 14C yr BP at CS. The change from a mangrove ecosystem to a salt marsh on the higher elevation, around 420 14C yr BP is probably natural and not due to an anthropogenic impact. Modern pollen rain from different mangrove types show different ratios between Rhizophora and Avicennia pollen, which can be used to reconstruct past composition of the mangrove. In spite of bioturbation and especially tidal inundation, which change the local pollen deposition within the mangrove zone, past mangrove dynamics can be reconstructed. The pollen record for BDA indicates a mixed Rhizophora/Avicennia mangrove vegetation between 2170 and 1770 14C yr BP. Later Rhizophora trees became more frequent and since ca. 200 14C yr BP Avicennia dominated in the forest.
Resumo:
Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on co-occurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69-71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain-size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.