24 resultados para feed to gain ratio
Resumo:
I developed a new model for estimating annual production-to-biomass ratio P/B and production P of macrobenthic populations in marine and freshwater habitats. Self-learning artificial neural networks (ANN) were used to model the relationships between P/B and twenty easy-to-measure abiotic and biotic parameters in 1252 data sets of population production. Based on log-transformed data, the final predictive model estimates log(P/B) with reasonable accuracy and precision (r2 = 0.801; residual mean square RMS = 0.083). Body mass and water temperature contributed most to the explanatory power of the model. However, as with all least squares models using nonlinearly transformed data, back-transformation to natural scale introduces a bias in the model predictions, i.e., an underestimation of P/B (and P). When estimating production of assemblages of populations by adding up population estimates, accuracy decreases but precision increases with the number of populations in the assemblage.
Resumo:
These data are from a field experiment conducted in a shallow alluvial aquifer along the Colorado River in Rifle, Colorado, USA. In this experiment, bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Data include names and location data for boreholes, geochemical data for all the boreholes between June 1, 2010 and January 1, 2011, microarray data provided as signal to noise ratio (SNR) for individual microarray probes, microarray data provided as signal to noise ratio (SNR) by Genus.
Resumo:
Lithium isotopic compositions of hydrothermally altered sediments of Deep Sea Drilling Project (DSDP) site 477/477A, as well as high temperature vent fluids of the Guaymas Basin, have been determined to gain an understanding of lithium exchange during fluid-sediment interaction at this sediment-covered spreading center. Unaltered turbidite of the basin has a d6Li value of -10%, 5-7% heavier than fresh oceanic basalts. Contact metamorphism induced by a shallow sill intrusion results in a decrease of the lithium content of the adjacent sediments and a lighter isotopic value (-8%). Below the sill, sediments altered by a deep-seated hydrothermal system show strong depletions in lithium, while lithium isotopic compositions vary greatly, ranging from -11 to +1%. The shift to lighter composition is the result of preferential retention of the lighter isotope in recrystallized phases after destruction of the primary minerals. The complexity of the isotope profile is attributed to inhomogeneity in mineral composition, the tortuous pathway of fluids and the temperature effect on isotopic fractionation. The range of lithium concentration and d6Li values for the vent fluids sampled in 1982 and 1985 overlaps with that of the sediment-free mid-ocean ridge systems. The lack of a distinct expression of sediment input is explained in terms of a flow-through system with continuous water recharge. The observations on the natural system agree well with the results of laboratory hydrothermal experiments. The experimental study demonstrates the importance of temperature, pressure, water/rock ratio, substrate composition and reaction time on the lithium isotopic composition of the reacted fluid. High temperature authigenic phases do not seem to constitute an important sink for lithium and sediments of a hydrothermal system such as Guaymas are a source of lithium to the ocean. The ready mobility of lithium in the sediment under elevated temperature and pressure conditions also has important implications for lithium cycling in subduction zones.
Resumo:
Thorium and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution Th-230(excess) profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06-0.59 ppb (Th-230), 0.43-1.40 ppm (Th-232), 0.09-0.49 ppb (U-234) and 1.66-8.24 ppm (U-238). The uranium activity ratio in the uppermost samples (1-6 mm) and in two further sections in the nodule at 12.5+/-1.0 mm and 27.3-33.5 mm comes close to the present ocean wa ter value of 1.144+/-0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the Th-230(excess) concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant Th-230(excess) concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11-15 and 28-33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable sb supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.
Resumo:
A method was developed to extract adenine nucleotides AMP, ADP, and ATP from marine macroalgal tissue to gain information on the cellular energy charge. Quantification was carried out by high performance liquid chromatography (HPLC). Three species from the rocky shore of the island of Helgoland (German Bight) were examined: Laminaria saccharina (Phaeophyta), Chondrus crispus (Rhodophyta), and Ulva lactuca (Chlorophyta). In L. saccharina and C. crispus, the adenylate energy charge (AEC) was determined in different thallus regions. AEC varied in relation to tissue age and function. Higher AEC values typically occurred in thallus regions with meristematic activity. Furthermore, L. saccharina and U. lactuca were exposed to UV-A and elevated UV-B radiation. The AEC was calculated and the maximal quantum yield of photosystem II (Fv/Fm) was determined as indicators for UV stress. In both species, the AEC remained at high values (0.72 ± 0.04), while Fv/Fm dropped rapidly. The results show that the photosynthesis of the phaeophyte is more resistant to UV radiation than the chlorophyte.
Resumo:
Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga- Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages between 1.5 to 3 Ma. The Lusancay Islands can be excluded as a source for the volcanogenic layers found during Leg 180. Generally, the volcanogenic layers indicate much calc-alkaline rhyolitic volcanism in eastern Papua since 3.8 Ma. Starting at 135 ka, however, peralkaline tephra layers appear. This geochemical change in source characteristics might reflect the onset of a change in geotectonic regime, from crustal subduction to spreading, affecting the D'Entrecasteaux Islands region. Initial 143Nd/144Nd ratios as low as 0.5121 and 0.5127 for two of the tephra layers are interpreted as indicating that D'Entrecasteaux Islands volcanism younger than 2.9 Ma occasionally interacted with the Late Archean basement, possibly reflecting the mobilisation of the deep continental crust during active rift propagation.
Resumo:
Within the context of the overall ecological working programme Dynamics of Antarctic Marine Shelf Ecosystems (DynAMo) of the PS96 (ANT-XXXI/2) cruise of RV "Polarstern" to the Weddell Sea (Dec 2015 to Feb 2016), seabed imaging surveys were carried out along drift profiles by means of the Ocean Floor Observation System (OFOS) of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Bremerhaven. The setup and mode of deployment of the OFOS was similar to that described by Bergmann and Klages (2012, doi:10.1016/j.marpolbul.2012.09.018). OFOS is a surface-powered gear equipped with two downward-looking cameras installed side-by-side: one high-resolution, wide-angle still camera (CANON® EOS 5D Mark III; lens: Canon EF 24 f/1.4L II, f stop: 13, exposure time: 1/125 sec; in-air view angles: 74° (horizontal), 53° (vertical), 84° (diagonal); image size: 5760 x 3840 px = 21 MPix; front of pressure resistant camera housing consisting of plexiglass dome port) and one high-definition color video camera (SONY® FCB-H11). The system was vertically lowered over the stern of the ship with a broadband fibre-optic cable, until it hovers approximately 1.5 m above the seabed. It was then towed after the slowly sailing ship at a speed of approximately 0.5 kn (0.25 m/s). The ship's Global Acoustic Positioning System (GAPS), combining Ultra Short Base Line (USBL), Inertial Navigation System (INS) and satellite-based Global Positioning System (GPS) technologies, was used to gain highly precise underwater position data of the OFOS. During the profile, OFOS was kept hanging at the preferred height above the seafloor by means of the live video feed and occasional minor cable-length adjustments with the winch to compensate small-scale bathymetric variations in seabed morphology. Information on water depth and height above the seafloor were continuously recorded by means of OFOS-mounted sensors (GAPS transponder, Tritech altimeter). Three lasers, which are placed beside the still camera, emit parallel beams and project red light points, arranged as an equilateral triangle with a side length of 50 cm, in each photo, thus providing a scale that can be used to calculate the seabed area depicted in each image and/or measure the size of organisms or seabed features visible in the image. In addition, the seabed area depicted was estimated using altimeter-derived height above seafloor and optical characteristics of the OFOS still camera. In automatic mode, a seabed photo, depicting an area of approximately 3.45 m**2 (= 2.3 m x 1.5 m; with variations depending on the actual height above ground), was taken every 30 seconds to obtain series of "TIMER" stills distributed at regular distances along the profiles that vary in length depending on duration of the cast. At a ship speed of 0.5 kn, the average distance between seabed images was approximately 5 m. Additional "HOTKEY" photos were taken from interesting objects (organisms, seabed features, such as putative iceberg scours) when they appeared in the live video feed (which was also recorded, in addition to the stills, for documentation and possible later analysis). If any image from this collection is used, please cite the reference as given above.
Resumo:
Measurements of the stable isotopic composition (dD(H2) or dD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (X(H2)) measurements for understanding the atmospheric H2 cycle. dD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by X(H2) values that reach up to 1 ppm and low dD values. An isotopic source signature analysis yields an apparent source signature below -400 per mil, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (-340 per mil), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in (H2) at lower sampling levels (20 and 60m) with respect to higher sampling levels (120 and 200m). There was a significant shift to lower median dD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising features come to light when a non-background location is studied, revealing remaining gaps in our understanding.